Let's take:
l = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
The result I'm looking for is
r = [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
and not
r = [(1, 4, 7), (2, 5, 8), (3, 6, 9)]
Let's take:
l = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
The result I'm looking for is
r = [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
and not
r = [(1, 4, 7), (2, 5, 8), (3, 6, 9)]
Python 3:
# short circuits at shortest nested list if table is jagged:
list(map(list, zip(*l)))
# discards no data if jagged and fills short nested lists with None
list(map(list, itertools.zip_longest(*l, fillvalue=None)))
Python 2:
map(list, zip(*l))
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
Explanation:
There are two things we need to know to understand what's going on:
zip(*iterables)
This means zip
expects an arbitrary number of arguments each of which must be iterable. E.g. zip([1, 2], [3, 4], [5, 6])
.args
, f(*args)
will call f
such that each element in args
is a separate positional argument of f
.itertools.zip_longest
does not discard any data if the number of elements of the nested lists are not the same (homogenous), and instead fills in the shorter nested lists then zips them up.Coming back to the input from the question l = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
, zip(*l)
would be equivalent to zip([1, 2, 3], [4, 5, 6], [7, 8, 9])
. The rest is just making sure the result is a list of lists instead of a list of tuples.
itertools
function zip_longest()
works with uneven lists. See DOCS –
Justiciable list(zip(*l))
works correctly in Python 3. –
Adowa zip(*l)
in Python 2), but you get a list of tuples, not a list of lists. Of course, list(list(it))
is always the same thing as list(it)
. –
Photocurrent list(itertools.zip_longest(*data))
the *
modifier effectively converts zip to extract, reversing the operation of zip.. –
Mete Equivalently to Jena's solution:
>>> l=[[1,2,3],[4,5,6],[7,8,9]]
>>> [list(i) for i in zip(*l)]
... [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
map()
, this solution is the one which is the most in the Python spirit... –
Bobby One way to do it is with NumPy transpose. For a list, a:
>>> import numpy as np
>>> np.array(l).T.tolist()
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
Or another one without zip (python < 3):
>>> map(list, map(None, *l))
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
Or for python >= 3:
>>> list(map(lambda *x: list(x), *l))
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
map
could do that. Here's a slight refinement that doesn't require 2 calls, though: map(lambda *a: list(a), *l)
–
Endocentric map(None, ...)
doesn't seem to work for Py3. The generator is created but next()
raises an error immediately: TypeError: 'NoneType' object is not callable
. –
Reliance just for fun, valid rectangles and assuming that m[0] exists
>>> m = [[1,2,3],[4,5,6],[7,8,9]]
>>> [[row[i] for row in m] for i in range(len(m[0]))]
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
[[j[i] for j in l] for i in range(len(l[0]))]
. Of course, you have to be sure that list l
is not empty. –
Endocentric NaN
s, if required to maintain the low level data structure. If the foreshortened row for badp's example were in the middle instead of the end, you'd have to use NaN
s to maintain the sequence of sequences data structure, but not if you converted it to something that allows sparesness (like a dict
of dict
s or scipy.sparse
matrix). –
Outface None
s or NaN
s so that jena's approach would work. –
Outface len(l)
to len(l[0])
as @LeeD suggests. –
Mull Methods 1 and 2 work in Python 2 or 3, and they work on ragged, rectangular 2D lists. That means the inner lists do not need to have the same lengths as each other (ragged) or as the outer lists (rectangular). The other methods, well, it's complicated.
import itertools
import six
list_list = [[1,2,3], [4,5,6, 6.1, 6.2, 6.3], [7,8,9]]
map()
, zip_longest()
>>> list(map(list, six.moves.zip_longest(*list_list, fillvalue='-')))
[[1, 4, 7], [2, 5, 8], [3, 6, 9], ['-', 6.1, '-'], ['-', 6.2, '-'], ['-', 6.3, '-']]
six.moves.zip_longest()
becomes
itertools.izip_longest()
in Python 2itertools.zip_longest()
in Python 3The default fillvalue is None
. Thanks to @jena's answer, where map()
is changing the inner tuples to lists. Here it is turning iterators into lists. Thanks to @Oregano's and @badp's comments.
In Python 3, pass the result through list()
to get the same 2D list as method 2.
zip_longest()
>>> [list(row) for row in six.moves.zip_longest(*list_list, fillvalue='-')]
[[1, 4, 7], [2, 5, 8], [3, 6, 9], ['-', 6.1, '-'], ['-', 6.2, '-'], ['-', 6.3, '-']]
The @inspectorG4dget alternative.
map()
of map()
— broken in Python 3.6>>> map(list, map(None, *list_list))
[[1, 4, 7], [2, 5, 8], [3, 6, 9], [None, 6.1, None], [None, 6.2, None], [None, 6.3, None]]
This extraordinarily compact @SiggyF second alternative works with ragged 2D lists, unlike his first code which uses numpy to transpose and pass through ragged lists. But None has to be the fill value. (No, the None passed to the inner map() is not the fill value. It means there is no function to process each column. The columns are just passed through to the outer map() which converts them from tuples to lists.)
Somewhere in Python 3, map()
stopped putting up with all this abuse: the first parameter cannot be None, and ragged iterators are just truncated to the shortest. The other methods still work because this only applies to the inner map().
map()
of map()
revisited>>> list(map(list, map(lambda *args: args, *list_list)))
[[1, 4, 7], [2, 5, 8], [3, 6, 9]] // Python 2.7
[[1, 4, 7], [2, 5, 8], [3, 6, 9], [None, 6.1, None], [None, 6.2, None], [None, 6.3, None]] // 3.6+
Alas the ragged rows do NOT become ragged columns in Python 3, they are just truncated. Boo hoo progress.
solution1 = map(list, zip(*l))
solution2 = [list(i) for i in zip(*l)]
solution3 = []
for i in zip(*l):
solution3.append((list(i)))
print(*solution1)
print(*solution2)
print(*solution3)
# [1, 4, 7], [2, 5, 8], [3, 6, 9]
import numpy as np
r = list(map(list, np.transpose(l)))
np.transpose(l).tolist()
. –
Nepotism Maybe not the most elegant solution, but here's a solution using nested while loops:
def transpose(lst):
newlist = []
i = 0
while i < len(lst):
j = 0
colvec = []
while j < len(lst):
colvec.append(lst[j][i])
j = j + 1
newlist.append(colvec)
i = i + 1
return newlist
more_itertools.unzip()
is easy to read, and it also works with generators.
import more_itertools
l = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
r = more_itertools.unzip(l) # a tuple of generators.
r = list(map(list, r)) # a list of lists
or equivalently
import more_itertools
l = more_itertools.chunked(range(1,10), 3)
r = more_itertools.unzip(l) # a tuple of generators.
r = list(map(list, r)) # a list of lists
matrix = [[1,2,3],
[1,2,3],
[1,2,3],
[1,2,3],
[1,2,3],
[1,2,3],
[1,2,3]]
rows = len(matrix)
cols = len(matrix[0])
transposed = []
while len(transposed) < cols:
transposed.append([])
while len(transposed[-1]) < rows:
transposed[-1].append(0)
for i in range(rows):
for j in range(cols):
transposed[j][i] = matrix[i][j]
for i in transposed:
print(i)
One more way for square matrix. No numpy, nor itertools, use (effective) in-place elements exchange.
def transpose(m):
for i in range(1, len(m)):
for j in range(i):
m[i][j], m[j][i] = m[j][i], m[i][j]
Just for fun: If you then want to make them all into dicts.
In [1]: l = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
...: fruits = ["Apple", "Pear", "Peach",]
...: [dict(zip(fruits, j)) for j in [list(i) for i in zip(*l)]]
Out[1]:
[{'Apple': 1, 'Pear': 4, 'Peach': 7},
{'Apple': 2, 'Pear': 5, 'Peach': 8},
{'Apple': 3, 'Pear': 6, 'Peach': 9}]
Here is a solution for transposing a list of lists that is not necessarily square:
maxCol = len(l[0])
for row in l:
rowLength = len(row)
if rowLength > maxCol:
maxCol = rowLength
lTrans = []
for colIndex in range(maxCol):
lTrans.append([])
for row in l:
if colIndex < len(row):
lTrans[colIndex].append(row[colIndex])
#Import functions from library
from numpy import size, array
#Transpose a 2D list
def transpose_list_2d(list_in_mat):
list_out_mat = []
array_in_mat = array(list_in_mat)
array_out_mat = array_in_mat.T
nb_lines = size(array_out_mat, 0)
for i_line_out in range(0, nb_lines):
array_out_line = array_out_mat[i_line_out]
list_out_line = list(array_out_line)
list_out_mat.append(list_out_line)
return list_out_mat
© 2022 - 2024 — McMap. All rights reserved.
l
is not evenly sized (say, some rows are shorter than others),zip
will not compensate for it and instead chop away rows from the output. Sol=[[1,2],[3,4],[5]]
gives you[[1,3,5]]
. – Bethought