I am attempting to work through Hadley Wickham's R for Data Science and have gotten tripped up on the following question: "How could you use arrange() to sort all missing values to the start? (Hint: use is.na())" I am using the flights dataset included in the nycflights13 package. Given that arrange() sorts all unknown values to the bottom of the dataframe, I am not sure how one would do the opposite across the missing values of all variables. I realize that this question can be answered with base R code, but I am specifically interested in how this would be done using dplyr and a call to the arrange() and is.na() functions. Thanks.
dplyr arrange() function sort by missing values
We can wrap it with desc
to get the missing values at the start
flights %>%
arrange(desc(is.na(dep_time)),
desc(is.na(dep_delay)),
desc(is.na(arr_time)),
desc(is.na(arr_delay)),
desc(is.na(tailnum)),
desc(is.na(air_time)))
The NA values were only found in those variables based on
names(flights)[colSums(is.na(flights)) >0]
#[1] "dep_time" "dep_delay" "arr_time" "arr_delay" "tailnum" "air_time"
Instead of passing each variable name at a time, we can also use NSE arrange_
nm1 <- paste0("desc(is.na(", names(flights)[colSums(is.na(flights)) >0], "))")
r1 <- flights %>%
arrange_(.dots = nm1)
r1 %>%
head()
#year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay carrier flight tailnum
# <int> <int> <int> <int> <int> <dbl> <int> <int> <dbl> <chr> <int> <chr>
#1 2013 1 2 NA 1545 NA NA 1910 NA AA 133 <NA>
#2 2013 1 2 NA 1601 NA NA 1735 NA UA 623 <NA>
#3 2013 1 3 NA 857 NA NA 1209 NA UA 714 <NA>
#4 2013 1 3 NA 645 NA NA 952 NA UA 719 <NA>
#5 2013 1 4 NA 845 NA NA 1015 NA 9E 3405 <NA>
#6 2013 1 4 NA 1830 NA NA 2044 NA 9E 3716 <NA>
#Variables not shown: origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
# time_hour <time>.
Update
With the newer versions of tidyverse (dplyr_0.7.3
, rlang_0.1.2
) , we can also make use of arrange_at
, arrange_all
, arrange_if
nm1 <- names(flights)[colSums(is.na(flights)) >0]
r2 <- flights %>%
arrange_at(vars(nm1), funs(desc(is.na(.))))
Or use arrange_if
f <- rlang::as_function(~ any(is.na(.)))
r3 <- flights %>%
arrange_if(f, funs(desc(is.na(.))))
identical(r1, r2)
#[1] TRUE
identical(r1, r3)
#[1] TRUE
Try the easiest way, what he just showed you:
arrange(flights, desc(is.na(dep_time)))
The other nice shortcuts:
arrange(flights, !is.na(dep_time))
or
arrange(flights, -is.na(dep_time))
The following arranges the rows in descending order by their number of NA
s:
flights %>%
arrange(desc(rowSums(is.na(.))))
# A tibble: 336,776 × 19
year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
<int> <int> <int> <int> <int> <dbl> <int> <int>
1 2013 1 2 NA 1545 NA NA 1910
2 2013 1 2 NA 1601 NA NA 1735
3 2013 1 3 NA 857 NA NA 1209
4 2013 1 3 NA 645 NA NA 952
5 2013 1 4 NA 845 NA NA 1015
6 2013 1 4 NA 1830 NA NA 2044
7 2013 1 5 NA 840 NA NA 1001
8 2013 1 7 NA 820 NA NA 958
9 2013 1 8 NA 1645 NA NA 1838
10 2013 1 9 NA 755 NA NA 1012
# ... with 336,766 more rows, and 11 more variables: arr_delay <dbl>, carrier <chr>,
# flight <int>, tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
# distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
Solution by @akrun works fine. However, arrange_
is deprecated SE versions of main verbs. to avoid it, we can use eval
nmf <- names(flights)[colSums(is.na(flights)) > 0]
rules = paste0("!is.na(", nmf, ")")
rc <- paste(rules, collapse = ",")
arce <- paste("arrange(flights," , rc , ")")
expr <- parse(text = arce)
ret <- eval(expr)
Using the data frame (x) the code should be
arrange(df, !is.na(x))
This code is already suggested above –
Kermitkermy
Answer was already given by someone else. Please read carefully already provided answers to avoid duplications. –
Pelson
© 2022 - 2025 — McMap. All rights reserved.
arrange(dat, desc(is.na(variable)))
– Aquinas