What we want to sort by is the angle from the start coordinate. I've used numpy here to interpret each vector from the starting coordinate as a complex number, for which there is an easy way of computing the angle (counterclockwise along the unit sphere)
def angle_with_start(coord, start):
vec = coord - start
return np.angle(np.complex(vec[0], vec[1]))
Full code:
import itertools
import numpy as np
def angle_with_start(coord, start):
vec = coord - start
return np.angle(np.complex(vec[0], vec[1]))
def sort_clockwise(points):
# convert into a coordinate system
# (1, 1, 1, 2) -> (1, 1), (1, 2)
coords = [np.array([points[i], points[i+4]]) for i in range(len(points) // 2)]
# find the point closest to the origin,
# this becomes our starting point
coords = sorted(coords, key=lambda coord: np.linalg.norm(coord))
start = coords[0]
rest = coords[1:]
# sort the remaining coordinates by angle
# with reverse=True because we want to sort by clockwise angle
rest = sorted(rest, key=lambda coord: angle_with_start(coord, start), reverse=True)
# our first coordinate should be our starting point
rest.insert(0, start)
# convert into the proper coordinate format
# (1, 1), (1, 2) -> (1, 1, 1, 2)
return list(itertools.chain.from_iterable(zip(*rest)))
Behavior on some sample inputs:
In [1]: a
Out[1]: [1, 1, 2, 2, 1, 2, 1, 2]
In [2]: sort_clockwise(a)
Out[2]: [1, 1, 2, 2, 1, 2, 2, 1]
In [3]: b
Out[3]: [1, 2, 0, 2, 1, 2, 3, 1]
In [4]: sort_clockwise(b)
Out[4]: [1, 0, 2, 2, 1, 3, 2, 1]
cmp
function to compare two coordinates in the list at a time. Computing the angles means we can use them as comparative values for thekey
parameter, which is much more efficient. See Why is the cmp parameter removed from sort/sorted in Python3.0? – Arecacmp
vskey
. – Diphyodont