Can i understand why the str.startswith() is not dealing with Regex :
col1
0 country
1 Country
i.e : df.col1.str.startswith('(C|c)ountry')
it returns all the values False :
col1
0 False
1 False
Can i understand why the str.startswith() is not dealing with Regex :
col1
0 country
1 Country
i.e : df.col1.str.startswith('(C|c)ountry')
it returns all the values False :
col1
0 False
1 False
Series.str.startswith
does not accept regex because it is intended to behave similarly to str.startswith
in vanilla Python, which does not accept regex. The alternative is to use a regex match (as explained in the docs):
df.col1.str.contains('^[Cc]ountry')
The character class [Cc]
is probably a better way to match C
or c
than (C|c)
, unless of course you need to capture which letter is used. In this case you can do ([Cc])
.
Series.str.startswith
does not accept regexes. Use Series.str.match
instead:
df.col1.str.match(r'(C|c)ountry', as_indexer=True)
Output:
0 True
1 True
Name: col1, dtype: bool
startswith
. –
Pinckney Series.str.match
relies on re.match
, which matches at the beginning of the string. –
Genisia pd.Series(['countryasdf', 'Country']).str.match(r'(C|c)ountry', as_indexer=True)
gives pd.Series([True, True])
. –
Genisia as_indexer=True
this works. But still deprecated. –
Pinckney as_indexer=True
, you get pd.Series([('c',), ('C',)])
. –
Genisia Series.str.startswith
can also receive a tuple like this:
df.col1.str.startswith(("Country","country"))
All elements from the tuple are now searched for. You can also read the tuple as an OR operator within Series.str.startswith
.
© 2022 - 2025 — McMap. All rights reserved.
startswith
accepts string or regex as parameter? – Wimblepandas.Series.str.startswith
does not accept regex. – Dispositiondf['col1'].str.startswith(('country', 'Country'))
(It accepts tuples for either-or) – Glaring