This is the original Java implementation of Smoothsort that used to be available via the Wikipedia article.
// by keeping these constants, we can avoid the tiresome business
// of keeping track of Dijkstra's b and c. Instead of keeping
// b and c, I will keep an index into this array.
static final int LP[] = { 1, 1, 3, 5, 9, 15, 25, 41, 67, 109,
177, 287, 465, 753, 1219, 1973, 3193, 5167, 8361, 13529, 21891,
35421, 57313, 92735, 150049, 242785, 392835, 635621, 1028457,
1664079, 2692537, 4356617, 7049155, 11405773, 18454929, 29860703,
48315633, 78176337, 126491971, 204668309, 331160281, 535828591,
866988873 // the next number is > 31 bits.
};
public static <C extends Comparable<? super C>> void sort(C[] m,
int lo, int hi) {
int head = lo; // the offset of the first element of the prefix into m
// These variables need a little explaining. If our string of heaps
// is of length 38, then the heaps will be of size 25+9+3+1, which are
// Leonardo numbers 6, 4, 2, 1.
// Turning this into a binary number, we get b01010110 = 0x56. We represent
// this number as a pair of numbers by right-shifting all the zeros and
// storing the mantissa and exponent as "p" and "pshift".
// This is handy, because the exponent is the index into L[] giving the
// size of the rightmost heap, and because we can instantly find out if
// the rightmost two heaps are consecutive Leonardo numbers by checking
// (p&3)==3
int p = 1; // the bitmap of the current standard concatenation >> pshift
int pshift = 1;
while (head < hi) {
if ((p & 3) == 3) {
// Add 1 by merging the first two blocks into a larger one.
// The next Leonardo number is one bigger.
sift(m, pshift, head);
p >>>= 2;
pshift += 2;
} else {
// adding a new block of length 1
if (LP[pshift - 1] >= hi - head) {
// this block is its final size.
trinkle(m, p, pshift, head, false);
} else {
// this block will get merged. Just make it trusty.
sift(m, pshift, head);
}
if (pshift == 1) {
// LP[1] is being used, so we add use LP[0]
p <<= 1;
pshift--;
} else {
// shift out to position 1, add LP[1]
p <<= (pshift - 1);
pshift = 1;
}
}
p |= 1;
head++;
}
trinkle(m, p, pshift, head, false);
while (pshift != 1 || p != 1) {
if (pshift <= 1) {
// block of length 1. No fiddling needed
int trail = Integer.numberOfTrailingZeros(p & ~1);
p >>>= trail;
pshift += trail;
} else {
p <<= 2;
p ^= 7;
pshift -= 2;
// This block gets broken into three bits. The rightmost
// bit is a block of length 1. The left hand part is split into
// two, a block of length LP[pshift+1] and one of LP[pshift].
// Both these two are appropriately heapified, but the root
// nodes are not necessarily in order. We therefore semitrinkle
// both of them
trinkle(m, p >>> 1, pshift + 1, head - LP[pshift] - 1, true);
trinkle(m, p, pshift, head - 1, true);
}
head--;
}
}
private static <C extends Comparable<? super C>> void sift(C[] m, int pshift,
int head) {
// we do not use Floyd's improvements to the heapsort sift, because we
// are not doing what heapsort does - always moving nodes from near
// the bottom of the tree to the root.
C val = m[head];
while (pshift > 1) {
int rt = head - 1;
int lf = head - 1 - LP[pshift - 2];
if (val.compareTo(m[lf]) >= 0 && val.compareTo(m[rt]) >= 0)
break;
if (m[lf].compareTo(m[rt]) >= 0) {
m[head] = m[lf];
head = lf;
pshift -= 1;
} else {
m[head] = m[rt];
head = rt;
pshift -= 2;
}
}
m[head] = val;
}
private static <C extends Comparable<? super C>> void trinkle(C[] m, int p,
int pshift, int head, boolean isTrusty) {
C val = m[head];
while (p != 1) {
int stepson = head - LP[pshift];
if (m[stepson].compareTo(val) <= 0)
break; // current node is greater than head. Sift.
// no need to check this if we know the current node is trusty,
// because we just checked the head (which is val, in the first
// iteration)
if (!isTrusty && pshift > 1) {
int rt = head - 1;
int lf = head - 1 - LP[pshift - 2];
if (m[rt].compareTo(m[stepson]) >= 0
|| m[lf].compareTo(m[stepson]) >= 0)
break;
}
m[head] = m[stepson];
head = stepson;
int trail = Integer.numberOfTrailingZeros(p & ~1);
p >>>= trail;
pshift += trail;
isTrusty = false;
}
if (!isTrusty) {
m[head] = val;
sift(m, pshift, head);
}
}