In a Docker era it is easy to scale this worker through my entire cluster
If you already have that infrastructure available, then great, use that. Bundle your Kafka libraries in some minimal container with health checks, and what not, and for the most part, that works fine. Adding a Kafka client dependency + a database dependency is all you really need, right?
If you're not using Spark, Flink, etc, you will need to handle Kafka errors, retries, offset and commit handling more closely to your code rather than letting the framework handle those for you.
I'll add in here that if you want Kafka + Database interactions, check out the Kafka Connect API. There's existing solutions for JDBC, Mongo, Couchbase, Cassandra, etc. already.
If you need more complete processing power, I'd go for Kafka Streams rather than needing to separately maintain a Spark cluster, and so that's "just Kafka"
Create a Spark cluster
Let's assume you don't want to maintain that, or rather you aren't able to pick between YARN, Mesos, Kubernetes, or Standalone. And if you are running the first three, it might be worth looking at running Docker on those anyway.
You're exactly right that it is extra overhead, so I find it's all up to what you have available (for example, an existing Hadoop / YARN cluster with idle memory resources), or what you're willing to support internally (or pay for vendor services, e g. Kafka & Databricks in some hosted solution).
Plus, Spark isn't running the latest Kafka client library (up until 2.4.0 updated to Kafka 2.0, I believe), so you'll need to determine if that's a selling point.
For actual streaming libraries, rather than Spark batches, Apache Beam or Flink would probably let you do the same types of workloads against Kafka
In general, in order to scale a producer / consumer, you need some form of resource scheduler. Installing Spark may not be difficult for some, but knowing how to use it efficiently and tune for appropriate resources can be
DStream
, which again, if your computation is "heavy", you'll need to do on your own. – Anstus