I need to perform a convolution using a Gaussian, however the width of the Gaussian needs to change. I'm not doing traditional signal processing but instead I need to take my perfect Probability Density Function (PDF) and ``smear" it, based on the resolution of my equipment.
For instance, suppose my PDF starts out as a spike/delta-function. I'll model this as a very narrow Gaussian. After being run through my equipment, it will be smeared out according to some Gaussian resolution. I can calculate this using the scipy.signal convolution functions.
import numpy as np
import matplotlib.pylab as plt
import scipy.signal as signal
import scipy.stats as stats
# Create the initial function. I model a spike
# as an arbitrarily narrow Gaussian
mu = 1.0 # Centroid
sig=0.001 # Width
original_pdf = stats.norm(mu,sig)
x = np.linspace(0.0,2.0,1000)
y = original_pdf.pdf(x)
plt.plot(x,y,label='original')
# Create the ``smearing" function to convolve with the
# original function.
# I use a Gaussian, centered at 0.0 (no bias) and
# width of 0.5
mu_conv = 0.0 # Centroid
sigma_conv = 0.5 # Width
convolving_term = stats.norm(mu_conv,sigma_conv)
xconv = np.linspace(-5,5,1000)
yconv = convolving_term.pdf(xconv)
convolved_pdf = signal.convolve(y/y.sum(),yconv,mode='same')
plt.plot(x,convolved_pdf,label='convolved')
plt.ylim(0,1.2*max(convolved_pdf))
plt.legend()
plt.show()
This all works no problem. But now suppose my original PDF is not a spike, but some broader function. For example, a Gaussian with sigma=1.0. And now suppose my resolution actually varys over x: at x=0.5, the smearing function is a Gaussian with sigma_conv=0.5, but at x=1.5, the smearing function is a Gaussian with sigma_conv=1.5. And suppose I know the functional form of the x-dependence of my smearing Gaussian. Naively, I thought I would change the line above to
convolving_term = stats.norm(mu_conv,lambda x: 0.2*x + 0.1)
But that doesn't work, because the norm function expects a value for the width, not a function. In some sense, I need my convolving function to be a 2D array, where I have a different smearing Gaussian for each point in my original PDF, which remains a 1D array.
So is there a way to do this with functions already defined in Python? I have some code to do this that I wrote myself....but I want to make sure I've not just re-invented the wheel.
Thanks in advance!
Matt
(last - first) / (length - 1)
being different to x "step" makes the width scaled (i.e., the sigmas aren't in the same "unit"), you really want that? – Uzia