Machine learning platform is one of the buzzwords in business, in order to boost develop ML or Deep learning.
There are a common part workflow orchestrator or workflow scheduler that help users build DAG, schedule and track experiments, jobs, and runs.
There are many machine learning platform that has workflow orchestrator, like Kubeflow pipeline, FBLearner Flow, Flyte
My question is what are the main differences between airflow and Kubeflow pipeline or other ML platform workflow orchestrator?
And airflow supports different language API and has large community, can we use airflow to build our ML workflow ?