I assume you're writing a bignum class of your own. If you only care about an integral result of log2, it's quite easy. Take the log of the most significant digit that's not zero, and add 8 for each byte after that one. This is assuming that each byte holds values 0-255. These are only accurate within ±.5, but very fast.
[0][42][53] (10805 in bytes)
log2(42) = 5
+ 8*1 = 8 (because of the one byte lower than MSB)
= 13 (Actual: 13.39941145)
If your values hold base 10 digits, that works out to log2(MSB)+3.32192809*num_digits_less_than_MSB
.
[0][5][7][6][2] (5762)
log2(5) = 2.321928095
+ 3.32192809*3 = 9.96578427 (because 3 digits lower than MSB)
= 12.28771 (Actual: 12.49235395)
(only accurate for numbers with less than ~10 million digits)
If you used the algorithm you found on wikipedia, it will be IMMENSELY slow. (but accurate if you need decimals)
It's been pointed out that my method is inaccurate when the MSB is small (still within ±.5, but no farther), but this is easily fixed by simply shifting the top two bytes into a single number, taking the log of that, and doing the multiplication for the bytes less than that number. I believe this will be accurate within half a percent, and still significantly faster than a normal logarithm.
[1][42][53] (76341 in bytes)
log2(1*256+42) = ?
log2(298) = 8.21916852046
+ 8*1 = 8 (because of the one byte lower than MSB)
= 16.21916852046 (Actual: 16.2201704643)
For base 10 digits, it's log2( [mostSignificantDigit]*10+[secondMostSignifcantDigit] ) + 3.32192809*[remainingDigitCount]
.
If performance is still an issue, you can use lookup tables for the log2 instead of using a full logarithm function.
double
. Please don't tell me you have written addition and multiplication routines forchar*
! – Promyceliumlog(100000000000000000000000000000)
sounds like a perfect candidate for floating point arithmetic to me. – Promycelium