Given two simple sets of data:
head(training_set)
x y
1 1 2.167512
2 2 4.684017
3 3 3.702477
4 4 9.417312
5 5 9.424831
6 6 13.090983
head(test_set)
x y
1 1 2.068663
2 2 4.162103
3 3 5.080583
4 4 8.366680
5 5 8.344651
I want to fit a linear regression line on the training data, and use that line (or the coefficients) to calculate the "test MSE" or Mean Squared Error of the Residuals on the test data once that line is fit there.
model = lm(y~x,data=training_set)
train_MSE = mean(model$residuals^2)
test_MSE = ?
APSE
? I never heard of that (while I can guess the reason for calling it average instead of mean). – Tranquillity