I tested a FIR filter with MATLAB and same (adapted) code in Python, including a frequency sweep. The FIR filter is pretty huge, N = 100 order, I post below the two codes, but leave you here the timing results:
MATLAB: Elapsed time is 11.149704 seconds.
PYTHON: time cost = 247.8841781616211 seconds.
PYTHON IS 25 TIMES SLOWER !!!
MATLAB CODE (main):
f1 = 4000; % bandpass frequency (response = 1).
f2 = 4200; % bandreject frequency (response = 0).
N = 100; % FIR filter order.
k = 0:2*N;
fs = 44100; Ts = 1/fs; % Sampling freq. and time.
% FIR Filter numerator coefficients:
Nz = Ts*(f1+f2)*sinc((f2-f1)*Ts*(k-N)).*sinc((f2+f1)*Ts*(k-N));
f = 0:fs/2;
w = 2*pi*f;
z = exp(-i*w*Ts);
% Calculation of the expected response:
Hz = polyval(Nz,z).*z.^(-2*N);
figure(1)
plot(f,abs(Hz))
title('Gráfica Respuesta Filtro FIR (Filter Expected Response)')
xlabel('frecuencia f (Hz)')
ylabel('|H(f)|')
xlim([0, 5000])
grid on
% Sweep Frequency Test:
tic
% Start and Stop frequencies of sweep, t = tmax = 50 seconds = 5000 Hz frequency:
fmin = 1; fmax = 5000; tmax = 50;
t = 0:Ts:tmax;
phase = 2*pi*fmin*t + 2*pi*((fmax-fmin).*t.^2)/(2*tmax);
x = cos(phase);
y = filtro2(Nz, 1, x); % custom filter function, not using "filter" library here.
figure(2)
plot(t,y)
title('Gráfica Barrido en Frecuencia Filtro FIR (Freq. Sweep)')
xlabel('Tiempo Barrido: t = 10 seg = 1000 Hz')
ylabel('y(t)')
xlim([0, 50])
grid on
toc
MATLAB CUSTOM FILTER FUNCTION
function y = filtro2(Nz, Dz, x)
Nn = length(Nz);
Nd = length(Dz);
N = length(x);
Nm = max(Nn,Nd);
x1 = [zeros(Nm-1,1) ; x'];
y1 = zeros(Nm-1,1);
for n = Nm:N+Nm-1
y1(n) = Nz(Nn:-1:1)*x1(n-Nn+1:n)/Dz(1);
if Nd > 1
y1(n) = y1(n) - Dz(Nd:-1:2)*y1(n-Nd+1:n-1)/Dz(1);
end
end
y = y1(Nm:Nm+N-1);
end
PYTHON CODE (main):
import numpy as np
from matplotlib import pyplot as plt
import FiltroDigital as fd
import time
j = np.array([1j])
pi = np.pi
f1, f2 = 4000, 4200
N = 100
k = np.array(range(0,2*N+1),dtype='int')
fs = 44100; Ts = 1/fs;
Nz = Ts*(f1+f2)*np.sinc((f2-f1)*Ts*(k-N))*np.sinc((f2+f1)*Ts*(k-N));
f = np.arange(0, fs/2, 1)
w = 2*pi*f
z = np.exp(-j*w*Ts)
Hz = np.polyval(Nz,z)*z**(-2*N)
plt.figure(1)
plt.plot(f,abs(Hz))
plt.title("Gráfica Respuesta Filtro FIR")
plt.xlabel("frecuencia f (Hz)")
plt.ylabel("|H(f)|")
plt.xlim(0, 5000)
plt.grid()
plt.show()
start_time = time.time()
fmin = 1; fmax = 5000; tmax = 50;
t = np.arange(0, tmax, Ts)
fase = 2*pi*fmin*t + 2*pi*((fmax-fmin)*t**2)/(2*tmax)
x = np.cos(fase)
y = fd.filtro(Nz, [1], x)
plt.figure(2)
plt.plot(t,y)
plt.title("Gráfica Barrido en Frecuencia Filtro FIR")
plt.xlabel("Tiempo Barrido: t = 10 seg = 1000 Hz")
plt.ylabel("y(t)")
plt.xlim(0, 50)
plt.grid()
plt.show()
elapsed_time = time.time() - start_time
print('time cost = ', elapsed_time)
PYTHON CUSTOM FILTER FUNCTION
import numpy as np
def filtro(Nz, Dz, x):
Nn = len(Nz);
Nd = len(Dz);
Nz = np.array(Nz,dtype=float)
Dz = np.array(Dz,dtype=float)
x = np.array(x,dtype=float)
N = len(x);
Nm = max(Nn,Nd);
x1 = np.insert(x, 0, np.zeros((Nm-1,), dtype=float))
y1 = np.zeros((N+Nm-1,), dtype=float)
for n in range(Nm-1,N+Nm-1) :
y1[n] = sum(Nz*np.flip( x1[n-Nn+1:n+1]))/Dz[0] # = y1FIR[n]
if Nd > 1:
y1[n] = y1[n] - sum(Dz[1:]*np.flip( y1[n-Nd+1:n]))/Dz[0]
print(y1[n])
y = y1[Nm-1:]
return y
t = t+1
then it would change. – Dollhousepython -m timeit
shows that usingpass
is a bit slower thancontinue
, but not in a significant way. On my machine the loops take 16 msec, which is less than half of what the OP claims. Also note that MATLAB has a JIT, hence such differences are to be expected especially with simple loops. – Pavlish