Maybe passing the actual array instead of the memory view can solve your problem.
If you want to execute a function in parallel, all of it parameters have to be picklable if i recall correctly. At least that is the case with python multiprocessing. So you could pass the array to the function and create the memoryview inside your function.
def some_function(matrix_as_array):
cdef double[:,:] matrix = matrix_as_array
...
I don't know if this helps you, but I encountered a similar problem. I use a memoryview as an attribute in a cdef class. I had to write my own __reduce__
and __setstate__
methods to correctly unpickle instances of my class. Pickling the memory view as an array by using numpy.asarray
and restoring it in __setstate__
worked for me. A reduced version of my code:
import numpy as np
cdef class Foo:
cdef double[:,:] matrix
def __init__(self, matrix):
'''Assign a passed array to the typed memory view.'''
self.matrix = matrix
def __reduce__(self):
'''Define how instances of Foo are pickled.'''
d=dict()
d['matrix'] = np.asarray(self.matrix)
return (Foo, (d['matrix'],), d)
def __setstate__(self, d):
'''Define how instances of Foo are restored.'''
self.matrix = d['matrix']
Note that __reduce__
returns a tuple consisting of a callable (Foo
), a tuple of parameters for that callable (i.e. what is needed to create a 'new' Foo instance, in this case the saved matrix) and the dictionary with all values needed to restore the instance.