If you have access to a shapefile, this is relatively straightforward with the help of the spdep
package.
Here's a standalone example using Californian zip code data (~3.5MB download):
# load libraries
library(rgdal)
library(spdep)
# download, unzip and import shapefile
download.file('http://geocommons.com/overlays/305142.zip', {f<-tempfile()})
unzip(f, exdir=tempdir())
shp <- readOGR(tempdir(), 'tigerline_shapefile_2010_2010_state_california_2010_census_5-digit_zip_code_tabulation_area_zcta5_state-based')
# identify neighbours for each poly
nbs <- setNames(poly2nb(shp), shp$ZCTA5CE10)
# convert to a binary neighbour matrix
nbs.mat <- nb2mat(nbs, zero.policy=TRUE, style='B')
# see?rgeos::gTouches for an alternative to the above steps
# assign zip codes as dimension names
dimnames(nbs.mat) <- list(shp$ZCTA5CE10, shp$ZCTA5CE10)
For our dataset, this returns a 1769 x 1769 matrix indicating which zip codes are neighbours. The first 10 rows and 10 columns look like this:
nbs.mat[1:10, 1:10]
## 94601 94501 94560 94587 94580 94514 94703 95601 95669 95901
## 94601 0 1 0 0 0 0 0 0 0 0
## 94501 1 0 0 0 0 0 0 0 0 0
## 94560 0 0 0 0 0 0 0 0 0 0
## 94587 0 0 0 0 0 0 0 0 0 0
## 94580 0 0 0 0 0 0 0 0 0 0
## 94514 0 0 0 0 0 0 0 0 0 0
## 94703 0 0 0 0 0 0 0 0 0 0
## 95601 0 0 0 0 0 0 0 0 0 0
## 95669 0 0 0 0 0 0 0 0 0 0
## 95901 0 0 0 0 0 0 0 0 0 0
Optionally, if you want a two-column matrix giving neighbouring pairs of zip codes (i.e., zip code in col 1, and neighbouring zip code in col 2), you can use the following.
nbs.list <- sapply(row.names(nbs.mat), function(x) names(which(nbs.mat[x, ] == 1)))
nbs.pairs <- data.frame(zipcode=rep(names(nbs.list), sapply(nbs.list, length)),
neighbour=unlist(nbs.list))
head(nbs.pairs)
## zipcode neighbour
## 946011 94601 94501
## 946012 94601 94602
## 946013 94601 94605
## 946014 94601 94606
## 946015 94601 94621
## 946016 94601 94619