I want to know if it is possible to use the pandas to_csv()
function to add a dataframe to an existing csv file. The csv file has the same structure as the loaded data.
You can specify a python write mode in the pandas to_csv
function. For append it is 'a'.
In your case:
df.to_csv('my_csv.csv', mode='a', header=False)
The default mode is 'w'.
If the file initially might be missing, you can make sure the header is printed at the first write using this variation:
output_path='my_csv.csv'
df.to_csv(output_path, mode='a', header=not os.path.exists(output_path))
df.to_csv(output_path, mode='a', header=not os.path.exists(output_path))
–
Unmask index=False
will tell df.to_csv
not to write the row index to the first column. Depending on the application, this might make sense to avoid a meaningless index column. –
Tletski You can append to a csv by opening the file in append mode:
with open('my_csv.csv', 'a') as f:
df.to_csv(f, header=False)
If this was your csv, foo.csv
:
,A,B,C
0,1,2,3
1,4,5,6
If you read that and then append, for example, df + 6
:
In [1]: df = pd.read_csv('foo.csv', index_col=0)
In [2]: df
Out[2]:
A B C
0 1 2 3
1 4 5 6
In [3]: df + 6
Out[3]:
A B C
0 7 8 9
1 10 11 12
In [4]: with open('foo.csv', 'a') as f:
(df + 6).to_csv(f, header=False)
foo.csv
becomes:
,A,B,C
0,1,2,3
1,4,5,6
0,7,8,9
1,10,11,12
with open('my_csv.csv', 'a') as f:
?? –
Wyler with open(filename, 'a') as f:
df.to_csv(f, header=f.tell()==0)
- Create file unless exists, otherwise append
- Add header if file is being created, otherwise skip it
mode='a'
as a parameter to to_csv
(ie df.to_csv(f, mode='a', header=f.tell()==0)
–
Neptune header=(f.tell()==0)
-- and also write : with open(filename, 'a', newline='') as f:
–
Semidome A little helper function I use with some header checking safeguards to handle it all:
def appendDFToCSV_void(df, csvFilePath, sep=","):
import os
if not os.path.isfile(csvFilePath):
df.to_csv(csvFilePath, mode='a', index=False, sep=sep)
elif len(df.columns) != len(pd.read_csv(csvFilePath, nrows=1, sep=sep).columns):
raise Exception("Columns do not match!! Dataframe has " + str(len(df.columns)) + " columns. CSV file has " + str(len(pd.read_csv(csvFilePath, nrows=1, sep=sep).columns)) + " columns.")
elif not (df.columns == pd.read_csv(csvFilePath, nrows=1, sep=sep).columns).all():
raise Exception("Columns and column order of dataframe and csv file do not match!!")
else:
df.to_csv(csvFilePath, mode='a', index=False, sep=sep, header=False)
Initially starting with a pyspark dataframes - I got type conversion errors (when converting to pandas df's and then appending to csv) given the schema/column types in my pyspark dataframes
Solved the problem by forcing all columns in each df to be of type string and then appending this to csv as follows:
with open('testAppend.csv', 'a') as f:
df2.toPandas().astype(str).to_csv(f, header=False)
This is how I did it in 2021
Let us say I have a csv sales.csv
which has the following data in it:
sales.csv:
Order Name,Price,Qty
oil,200,2
butter,180,10
and to add more rows I can load them in a data frame and append it to the csv like this:
import pandas
data = [
['matchstick', '60', '11'],
['cookies', '10', '120']
]
dataframe = pandas.DataFrame(data)
dataframe.to_csv("sales.csv", index=False, mode='a', header=False)
and the output will be:
Order Name,Price,Qty
oil,200,2
butter,180,10
matchstick,60,11
cookies,10,120
A bit late to the party but you can also use a context manager, if you're opening and closing your file multiple times, or logging data, statistics, etc.
from contextlib import contextmanager
import pandas as pd
@contextmanager
def open_file(path, mode):
file_to=open(path,mode)
yield file_to
file_to.close()
##later
saved_df=pd.DataFrame(data)
with open_file('yourcsv.csv','r') as infile:
saved_df.to_csv('yourcsv.csv',mode='a',header=False)`
open
as a context manager? –
Irmairme © 2022 - 2024 — McMap. All rights reserved.