I think this is what you want:
library(e1071)
data(iris)
df <- iris
df <- subset(df , Species=='setosa') #choose only one of the classes
x <- subset(df, select = -Species) #make x variables
y <- df$Species #make y variable(dependent)
model <- svm(x, y,type='one-classification') #train an one-classification model
print(model)
summary(model) #print summary
# test on the whole set
pred <- predict(model, subset(iris, select=-Species)) #create predictions
Output:
-Summary:
> summary(model)
Call:
svm.default(x = x, y = y, type = "one-classification")
Parameters:
SVM-Type: one-classification
SVM-Kernel: radial
gamma: 0.25
nu: 0.5
Number of Support Vectors: 27
Number of Classes: 1
-Predictions (only some of the predictions are shown here (where Species=='setosa') for visual reason):
> pred
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
45 46 47 48 49 50
FALSE TRUE TRUE TRUE TRUE TRUE