Years later, another one is below. But for everyday use I just
np.set_printoptions( threshold=20, edgeitems=10, linewidth=140,
formatter = dict( float = lambda x: "%.3g" % x )) # float arrays %.3g
''' printf( "... %.3g ... %.1f ...", arg, arg ... ) for numpy arrays too
Example:
printf( """ x: %.3g A: %.1f s: %s B: %s """,
x, A, "str", B )
If `x` and `A` are numbers, this is like `"format" % (x, A, "str", B)` in python.
If they're numpy arrays, each element is printed in its own format:
`x`: e.g. [ 1.23 1.23e-6 ... ] 3 digits
`A`: [ [ 1 digit after the decimal point ... ] ... ]
with the current `np.set_printoptions()`. For example, with
np.set_printoptions( threshold=100, edgeitems=3, suppress=True )
only the edges of big `x` and `A` are printed.
`B` is printed as `str(B)`, for any `B` -- a number, a list, a numpy object ...
`printf()` tries to handle too few or too many arguments sensibly,
but this is iffy and subject to change.
How it works:
numpy has a function `np.array2string( A, "%.3g" )` (simplifying a bit).
`printf()` splits the format string, and for format / arg pairs
format: % d e f g
arg: try `np.asanyarray()`
--> %s np.array2string( arg, format )
Other formats and non-ndarray args are left alone, formatted as usual.
Notes:
`printf( ... end= file= )` are passed on to the python `print()` function.
Only formats `% [optional width . precision] d e f g` are implemented,
not `%(varname)format` .
%d truncates floats, e.g. 0.9 and -0.9 to 0; %.0f rounds, 0.9 to 1 .
%g is the same as %.6g, 6 digits.
%% is a single "%" character.
The function `sprintf()` returns a long string. For example,
title = sprintf( "%s m %g n %g X %.3g",
__file__, m, n, X )
print( title )
...
pl.title( title )
Module globals:
_fmt = "%.3g" # default for extra args
_squeeze = np.squeeze # (n,1) (1,n) -> (n,) print in 1 line not n
See also:
http://docs.scipy.org/doc/numpy/reference/generated/numpy.set_printoptions.html
http://docs.python.org/2.7/library/stdtypes.html#string-formatting
'''
# https://mcmap.net/q/80029/-pretty-print-a-numpy-array-without-scientific-notation-and-with-given-precision
#...............................................................................
from __future__ import division, print_function
import re
import numpy as np
__version__ = "2014-02-03 feb denis"
_splitformat = re.compile( r'''(
%
(?<! %% ) # not %%
-? [ \d . ]* # optional width.precision
\w
)''', re.X )
# ... %3.0f ... %g ... %-10s ...
# -> ['...' '%3.0f' '...' '%g' '...' '%-10s' '...']
# odd len, first or last may be ""
_fmt = "%.3g" # default for extra args
_squeeze = np.squeeze # (n,1) (1,n) -> (n,) print in 1 line not n
#...............................................................................
def printf( format, *args, **kwargs ):
print( sprintf( format, *args ), **kwargs ) # end= file=
printf.__doc__ = __doc__
def sprintf( format, *args ):
""" sprintf( "text %.3g text %4.1f ... %s ... ", numpy arrays or ... )
%[defg] array -> np.array2string( formatter= )
"""
args = list(args)
if not isinstance( format, basestring ):
args = [format] + args
format = ""
tf = _splitformat.split( format ) # [ text %e text %f ... ]
nfmt = len(tf) // 2
nargs = len(args)
if nargs < nfmt:
args += (nfmt - nargs) * ["?arg?"]
elif nargs > nfmt:
tf += (nargs - nfmt) * [_fmt, " "] # default _fmt
for j, arg in enumerate( args ):
fmt = tf[ 2*j + 1 ]
if arg is None \
or isinstance( arg, basestring ) \
or (hasattr( arg, "__iter__" ) and len(arg) == 0):
tf[ 2*j + 1 ] = "%s" # %f -> %s, not error
continue
args[j], isarray = _tonumpyarray(arg)
if isarray and fmt[-1] in "defgEFG":
tf[ 2*j + 1 ] = "%s"
fmtfunc = (lambda x: fmt % x)
formatter = dict( float_kind=fmtfunc, int=fmtfunc )
args[j] = np.array2string( args[j], formatter=formatter )
try:
return "".join(tf) % tuple(args)
except TypeError: # shouldn't happen
print( "error: tf %s types %s" % (tf, map( type, args )))
raise
def _tonumpyarray( a ):
""" a, isarray = _tonumpyarray( a )
-> scalar, False
np.asanyarray(a), float or int
a, False
"""
a = getattr( a, "value", a ) # cvxpy
if np.isscalar(a):
return a, False
if hasattr( a, "__iter__" ) and len(a) == 0:
return a, False
try:
# map .value ?
a = np.asanyarray( a )
except ValueError:
return a, False
if hasattr( a, "dtype" ) and a.dtype.kind in "fi": # complex ?
if callable( _squeeze ):
a = _squeeze( a ) # np.squeeze
return a, True
else:
return a, False
#...............................................................................
if __name__ == "__main__":
import sys
n = 5
seed = 0
# run this.py n= ... in sh or ipython
for arg in sys.argv[1:]:
exec( arg )
np.set_printoptions( 1, threshold=4, edgeitems=2, linewidth=80, suppress=True )
np.random.seed(seed)
A = np.random.exponential( size=(n,n) ) ** 10
x = A[0]
printf( "x: %.3g \nA: %.1f \ns: %s \nB: %s ",
x, A, "str", A )
printf( "x %%d: %d", x )
printf( "x %%.0f: %.0f", x )
printf( "x %%.1e: %.1e", x )
printf( "x %%g: %g", x )
printf( "x %%s uses np printoptions: %s", x )
printf( "x with default _fmt: ", x )
printf( "no args" )
printf( "too few args: %g %g", x )
printf( x )
printf( x, x )
printf( None )
printf( "[]:", [] )
printf( "[3]:", [3] )
printf( np.array( [] ))
printf( [[]] ) # squeeze