There is a function in RcppAlgos
(I am the author) called comboGroups
built precisely for this task. As of version 2.8.0
, we can now handle groups of varying sizes.
library(RcppAlgos)
packageVersion("RcppAlgos")
#> [1] '2.8.0'
We specify the size of each team using the grpSizes
parameter:
players <- c("Ross", "Bobby", "Max", "Casper", "Jake")
comboGroups(players, grpSizes = c(2, 3))
#> Grp1 Grp1 Grp2 Grp2 Grp2
#> [1,] "Ross" "Bobby" "Max" "Casper" "Jake"
#> [2,] "Ross" "Max" "Bobby" "Casper" "Jake"
#> [3,] "Ross" "Casper" "Bobby" "Max" "Jake"
#> [4,] "Ross" "Jake" "Bobby" "Max" "Casper"
#> [5,] "Bobby" "Max" "Ross" "Casper" "Jake"
#> [6,] "Bobby" "Casper" "Ross" "Max" "Jake"
#> [7,] "Bobby" "Jake" "Ross" "Max" "Casper"
#> [8,] "Max" "Casper" "Ross" "Bobby" "Jake"
#> [9,] "Max" "Jake" "Ross" "Bobby" "Casper"
#> [10,] "Casper" "Jake" "Ross" "Bobby" "Max"
It is very efficient and quite flexible. Let’s test on a larger set of players.
library(microbenchmark)
more_players <- c(players, "Kai", "Eliana", "Jayden", "Luca",
"Rowan", "Nova", "Amara", "Finn", "Zion", "Mia")
microbenchmark(
f1 = combn(more_players,
7,
function(x) list(team1 = x, team2 = more_players[!more_players %in% x]),
simplify = FALSE
),
f2 = combn(more_players,
7,
function(x) list(team1 = x, team2 = setdiff(more_players, x)),
simplify = FALSE
),
f3_rcpp = comboGeneral(
v = more_players,
m = 7,
repetition = FALSE,
FUN = function(x) list(team1 = x, team2 = more_players[!more_players %in% x])
),
f4 = comboGroups(more_players, grpSizes = c(7, 8)),
unit = "relative"
)
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> f1 16.22184 19.03265 23.68141 20.78979 26.59770 92.08256 100 a
#> f2 41.34947 45.55672 57.30847 54.70320 59.88822 123.09864 100 b
#> f3_rcpp 11.83424 14.48575 17.65936 16.24856 21.43574 36.27697 100 c
#> f4 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 100 d
More than 2 Groups
What about more exotic groupings? With most other approaches, efficiency and code maintenance will be an issue.
Say for example, given more_players
(15 total players) what if we wanted to find all possible groupings with 2 teams of size 3, one team of size 4, and one team of size 5?
With comboGroups
, it is no problem:
system.time(t <- comboGroups(more_players, grpSizes = c(3, 3, 4, 5)))
#> user system elapsed
#> 0.508 0.040 0.548
head(t, n = 2)
#> Grp1 Grp1 Grp1 Grp2 Grp2 Grp2 Grp3 Grp3 Grp3 Grp3
#> [1,] "Ross" "Bobby" "Max" "Casper" "Jake" "Kai" "Eliana" "Jayden" "Luca" "Rowan"
#> [2,] "Ross" "Bobby" "Max" "Casper" "Jake" "Kai" "Eliana" "Jayden" "Luca" "Nova"
#> Grp4 Grp4 Grp4 Grp4 Grp4
#> [1,] "Nova" "Amara" "Finn" "Zion" "Mia"
#> [2,] "Rowan" "Amara" "Finn" "Zion" "Mia"
tail(t, n = 2)
#> Grp1 Grp1 Grp1 Grp2 Grp2 Grp2 Grp3 Grp3 Grp3
#> [6306299,] "Rowan" "Zion" "Mia" "Nova" "Amara" "Finn" "Jake" "Eliana" "Jayden"
#> [6306300,] "Rowan" "Zion" "Mia" "Nova" "Amara" "Finn" "Kai" "Eliana" "Jayden"
#> Grp3 Grp4 Grp4 Grp4 Grp4 Grp4
#> [6306299,] "Luca" "Ross" "Bobby" "Max" "Casper" "Kai"
#> [6306300,] "Luca" "Ross" "Bobby" "Max" "Casper" "Jake"
If you just need a sample of possible teams, try comboGroupsSample
:
comboGroupsSample(
more_players, grpSizes = c(3, 3, 4, 5), n = 2,
seed = 42, namedSample = TRUE
)
#> Grp1 Grp1 Grp1 Grp2 Grp2 Grp2 Grp3 Grp3 Grp3
#> 3207141 "Bobby" "Jake" "Mia" "Luca" "Amara" "Zion" "Max" "Casper" "Eliana"
#> 4248729 "Max" "Casper" "Nova" "Rowan" "Amara" "Finn" "Ross" "Bobby" "Kai"
#> Grp3 Grp4 Grp4 Grp4 Grp4 Grp4
#> 3207141 "Rowan" "Ross" "Kai" "Jayden" "Nova" "Finn"
#> 4248729 "Luca" "Jake" "Eliana" "Jayden" "Zion" "Mia"