For panel regressions, the plm
package can estimate clustered SEs along two dimensions.
Using M. Petersen’s benchmark results:
require(foreign)
require(plm)
require(lmtest)
test <- read.dta("http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.dta")
##Double-clustering formula (Thompson, 2011)
vcovDC <- function(x, ...){
vcovHC(x, cluster="group", ...) + vcovHC(x, cluster="time", ...) -
vcovHC(x, method="white1", ...)
}
fpm <- plm(y ~ x, test, model='pooling', index=c('firmid', 'year'))
So that now you can obtain clustered SEs:
##Clustered by *group*
> coeftest(fpm, vcov=function(x) vcovHC(x, cluster="group", type="HC1"))
t test of coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.029680 0.066952 0.4433 0.6576
x 1.034833 0.050550 20.4714 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
##Clustered by *time*
> coeftest(fpm, vcov=function(x) vcovHC(x, cluster="time", type="HC1"))
t test of coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.029680 0.022189 1.3376 0.1811
x 1.034833 0.031679 32.6666 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
##Clustered by *group* and *time*
> coeftest(fpm, vcov=function(x) vcovDC(x, type="HC1"))
t test of coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.029680 0.064580 0.4596 0.6458
x 1.034833 0.052465 19.7243 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
For more details see:
However the above works only if your data can be coerced to a pdata.frame
. It will fail if you have "duplicate couples (time-id)"
. In this case you can still cluster, but only along one dimension.
Trick plm
into thinking that you have a proper panel data set by specifying only one index:
fpm.tr <- plm(y ~ x, test, model='pooling', index=c('firmid'))
So that now you can obtain clustered SEs:
##Clustered by *group*
> coeftest(fpm.tr, vcov=function(x) vcovHC(x, cluster="group", type="HC1"))
t test of coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.029680 0.066952 0.4433 0.6576
x 1.034833 0.050550 20.4714 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
You can also use this workaround to cluster by a higher dimension or at a higher level (e.g. industry
or country
). However in that case you won't be able to use the group
(or time
) effects
, which is the main limit of the approach.
Another approach that works for both panel and other types of data is the multiwayvcov
package. It allows double clustering, but also clustering at higher dimensions. As per the packages's website, it is an improvement upon Arai's code:
- Transparent handling of observations dropped due to missingness
- Full multi-way (or n-way, or n-dimensional, or multi-dimensional) clustering
Using the Petersen data and cluster.vcov()
:
library("lmtest")
library("multiwayvcov")
data(petersen)
m1 <- lm(y ~ x, data = petersen)
coeftest(m1, vcov=function(x) cluster.vcov(x, petersen[ , c("firmid", "year")]))
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.029680 0.065066 0.4561 0.6483
## x 1.034833 0.053561 19.3206 <2e-16 ***
## ---
## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
robcov
only works forols
objects, but NOT withlm
objects. Do you know a similar function that works for the more mainstreamlm
? – Kurr