High-availability (HA for short) is a broad term, so when I think about it I tend to think as HA clusters.
From Wikipedia High-availability cluster:
High-availability clusters are groups of computers that
support server applications that can be reliably utilized with a
minimum amount of down-time. They operate by using high availability
software to harness redundant computers in groups or clusters that
provide continued service when system components fail. Without
clustering, if a server running a particular application crashes, the
application will be unavailable until the crashed server is fixed.
So the takeaway from the description above is that HA clusters will provide you with the minimum amount of down-time during a failover. Let me explain the two types of failover that HA clusters can provide you:
Hot-Hot / Active-Active: The redundant computers are truly operating in parallel, producing the exact same state, and the exact same output. They are all active nodes, operating as a perfect mirror of each other. In this scenario, your failover down-time is zero, and you can simply pull the power plug from any machine in the cluster without any downtime or disruption to your service.
Hot-Warn / Active-Passive: Only one primary computer is the active one, while the other computers in the cluster are passively rebuilding the same state as the primary. When the primary computer fails, it has to be disabled or killed (automatically or by an operator) and then a passive computer from the cluster needs to be made active (automatically or by an operator).
So what is the catch? The catch is that applications that can operate in a HA cluster are not trivial to design as they need to be true deterministic finite-state machines. A classic problem is when your application needs to use the clock to build state based on time, as clocks are very non-deterministic by nature.
Disclaimer: I am one of the developers of CoralSequencer.