This is what I would do:
Code
Eigen::Matrix3Xf A(3, 2); // 3x2
A << 1, 2, 2, 2, 3, 5;
Eigen::Vector3f V = Eigen::Vector3f(1, 2, 3);
const Eigen::Matrix3Xf C = A.array().colwise() * V.array();
std::cout << C << std::endl;
Example output:
1 2
4 4
9 15
Explanation
You were close, the trick is to use .array()
to do broadcasting multiplications.
colwiseReturnType
doesn't have a .array()
method, so we have to do our colwise shenanigans on the array view of A.
If you want to compute the element-wise product of two vectors (The coolest of cool cats call this the Hadamard Product), you can do
Eigen::Vector3f a = ...;
Eigen::Vector3f b = ...;
Eigen::Vector3f elementwise_product = a.array() * b.array();
Which is what the above code is doing, in a columnwise fashion.
Edit:
To address the row case, you can use .rowwise()
, and you'll need an extra transpose()
to make things fit
Eigen::Matrix<float, 3, 2> A; // 3x2
A << 1, 2, 2, 2, 3, 5;
Eigen::Vector2f V = Eigen::Vector2f(2, 3);
// Expected result
Eigen::Matrix<float, 3, 2> C = A.array().rowwise() * V.transpose().array();
std::cout << C << std::endl;
Example output:
2 6
4 6
6 15