There is a basic monad question in here, unrelated to Repa, plus several Repa-specific questions.
I am working on a library using Repa3. I am having trouble getting efficient parallel code. If I make my functions return delayed arrays, I get excruciatingly slow code that scales very well up to 8 cores. This code takes over 20GB of memory per the GHC profiler, and runs several orders of magnitude slower than the basic Haskell unboxed vectors.
Alternatively, if I make all of my functions return Unboxed manifest arrays (still attempting to use fusion within the functions, for example when I do a 'map'), I get MUCH faster code (still slower than using Haskell unboxed vectors) that doesn't scale at all, and in fact tends to get slightly slower with more cores.
Based on the FFT example code in Repa-Algorithms, it seems the correct approach is to always return manifest arrays. Is there ever a case where I should be returning delayed arrays?
The FFT code also makes plentiful use of the 'now' function. However, I get a type error when I try to use it in my code:
type Arr t r = Array t DIM1 r
data CycRingRepa m r = CRTBasis (Arr U r)
| PowBasis (Arr U r)
fromArray :: forall m r t. (BaseRing m r, Unbox r, Repr t r) => Arr t r -> CycRingRepa m r
fromArray =
let mval = reflectNum (Proxy::Proxy m)
in \x ->
let sh:.n = extent x
in assert (mval == 2*n) PowBasis $ now $ computeUnboxedP $ bitrev x
The code compiles fine without the 'now'. With the 'now', I get the following error:
Couldn't match type
r' with
Array U (Z :. Int) r' `r' is a rigid type variable bound by the type signature for fromArray :: (BaseRing m r, Unbox r, Repr t r) => Arr t r -> CycRingRepa m r at C:\Users\crockeea\Documents\Code\LatticeLib\CycRingRepa.hs:50:1 Expected type: CycRingRepa m r Actual type: CycRingRepa m (Array U DIM1 r)
I don't think this is my problem. It would be helpful if someone could explain the how the Monad works in 'now'. By my best estimation, the monad seems to be creating a 'Arr U (Arr U r)'. I'm expecting a 'Arr U r', which would then match the data constructor pattern. What is going on and how do I fix this?
The type signatures are:
computeUnboxedP :: Fill r1 U sh e => Array r1 sh e -> Array U sh e
now :: (Shape sh, Repr r e, Monad m) => Array r sh e -> m (Array r sh e)
It would be helpful to have a better idea of when it is appropriate to use 'now'.
A couple other Repa questions: Should I explicitly call computeUnboxedP (as in the FFT example code), or should I use the more general computeP (because the unbox part is inferred by my data type)? Should I store delayed or manifest arrays in the data type CycRingRepa? Eventually I would also like this code to work with Haskell Integers. Will this require me to write new code that uses something other than U arrays, or could I write polymorphic code that creates U arrays for unbox types and some other array for Integers/boxed types?
I realize there are a lot of questions in here, and I appreciate any/all answers!