Hell everyone! I'm using the Stanford Core NLP package and my goal is to perform sentiment analysis on a live-stream of tweets.
Using the sentiment analysis tool as is returns a very poor analysis of text's 'attitude' .. many positives are labeled neutral, many negatives rated positive. I've gone ahead an acquired well over a million tweets in a text file, but I haven't a clue how to actually train the tool and create my own model.
Link to Stanford Sentiment Analysis page
"Models can be retrained using the following command using the PTB format dataset:"
java -mx8g edu.stanford.nlp.sentiment.SentimentTraining -numHid 25 -trainPath train.txt -devPath dev.txt -train -model model.ser.gz
Sample from dev.txt (The leading 4 represents polarity out of 5 ... 4/5 positive)
(4 (4 (2 A) (4 (3 (3 warm) (2 ,)) (3 funny))) (3 (2 ,) (3 (4 (4 engaging) (2 film)) (2 .))))
Sample from test.txt
(3 (3 (2 If) (3 (2 you) (3 (2 sometimes) (2 (2 like) (3 (2 to) (3 (3 (2 go) (2 (2 to) (2 (2 the) (2 movies)))) (3 (2 to) (3 (2 have) (4 fun))))))))) (2 (2 ,) (2 (2 Wasabi) (3 (3 (2 is) (2 (2 a) (2 (3 good) (2 (2 place) (2 (2 to) (2 start)))))) (2 .)))))
Sample from train.txt
(3 (2 (2 The) (2 Rock)) (4 (3 (2 is) (4 (2 destined) (2 (2 (2 (2 (2 to) (2 (2 be) (2 (2 the) (2 (2 21st) (2 (2 (2 Century) (2 's)) (2 (3 new) (2 (2 ``) (2 Conan)))))))) (2 '')) (2 and)) (3 (2 that) (3 (2 he) (3 (2 's) (3 (2 going) (3 (2 to) (4 (3 (2 make) (3 (3 (2 a) (3 splash)) (2 (2 even) (3 greater)))) (2 (2 than) (2 (2 (2 (2 (1 (2 Arnold) (2 Schwarzenegger)) (2 ,)) (2 (2 Jean-Claud) (2 (2 Van) (2 Damme)))) (2 or)) (2 (2 Steven) (2 Segal))))))))))))) (2 .)))
I have two questions going forward.
What is the significance and difference between each file? Train.txt/Dev.txt/Test.txt ?
How would I train my own model with a raw, unparsed text file full of tweets?
I'm very new to NLP so if I am missing any required information or anything at all please critique! Thank you!