WaveletMapIndexed
can give a spatially-varying blur, as shown in the Mathematica documentation (WaveletMapIndexed->Examples->Applications->Image Processing). Here is an implementation of a foveatedBlur
, using a compiled version of the acuity
function from the other answer:
Clear[foveatedBlur];
foveatedBlur[image_, d_, cx_, cy_, blindspotradius_] :=
Module[{sx, sy},
{sy, sx} = ImageDimensions@image;
InverseWaveletTransform@WaveletMapIndexed[ImageMultiply[#,
Image[acuityC[d, sx, sy, -cy + sy/2, cx - sx/2, blindspotradius]]] &,
StationaryWaveletTransform[image, Automatic, 6], {___, 1 | 2 | 3 | 4 | 5 | 6}]]
where the compiled acuity is
Clear[acuityC];
acuityC = Compile[{{distance, _Real}, {sx, _Integer}, {sy, _Integer}, {x0, _Real},
{y0, _Real}, {blindspotradius, _Real}},
Table[With[{\[Theta] = ArcTan[distance, Sqrt[(x - x0)^2 + (y - y0)^2]]},
(Exp[-Abs[\[Theta]]/(15 Degree)] - .05)/.95
*(1. - Boole[(x - x0)^2 + (y - y0 + 0.25 sy)^2 <= blindspotradius^2])],
{x, Floor[-sx/2], Floor[sx/2 - 1]}, {y, Floor[-sy/2], Floor[sy/2 - 1]}]];
The distance parameter sets the rate of falloff of the acuity. Focusing point {cx,cy}
, and blind-spot radius are self-explanatory. Here is an example using Manipulate
, looking right at Lena's right eye:
size = 256;
lena = ImageResize[ExampleData[{"TestImage", "Lena"}], size];
Manipulate[foveatedBlur[lena, d, p[[1]], p[[2]], 20], {{d, 250}, 50,
500}, {{p, ImageDimensions@lena/2}, Locator, Appearance -> None}]
See the blind spot?