I've a document based application that uses a struct for its main data/model. As the model is a property of (a subclass of) NSDocument
it needs to be accessed from the main thread. So far all good.
But some operations on the data can take quite a long time and I want to provide the user with a progress bar. And this is where to problems start. Especially when the user starts two operations from the GUI in quick succession.
If I run the operation on the model synchronously (or in a 'normal' Task {}
) I get the correct serial behaviour, but the Main thread is blocked, hence I can't show a progress bar. (Option A)
If I run the operation on the model in a Task.detached {}
closure I can update the progress bar, but depending on the run time of the operations on the model, the second action of the user might complete before the first operation, resulting in invalid/unexpected state of the model. This is due to the await
statements needed in the detached task (I think). (Option B).
So I want a) to free up the main thread to update the GUI and b) make sure each task runs to full completion before another (queued) task starts. This would be quite possible using a background serial dispatch queue, but I'm trying to switch to the new Swift concurrency system, which is also used to perform any preparations before the model is accessed.
I tried using a global actor, as that seems to be some sort of serial background queue, but it also needs await
statements. Although the likelihood of unexpected state in the model is reduced, it's still possible.
I've written some small code to demonstrate the problem:
The model:
struct Model {
var doneA = false
var doneB = false
mutating func updateA() {
Thread.sleep(forTimeInterval: 5)
doneA = true
}
mutating func updateB() {
Thread.sleep(forTimeInterval: 1)
doneB = true
}
}
And the document (leaving out standard NSDocument
overrides):
@globalActor
struct ModelActor {
actor ActorType { }
static let shared: ActorType = ActorType()
}
class Document: NSDocument {
var model = Model() {
didSet {
Swift.print(model)
}
}
func update(model: Model) {
self.model = model
}
@ModelActor
func updateModel(with operation: (Model) -> Model) async {
var model = await self.model
model = operation(model)
await update(model: model)
}
@IBAction func operationA(_ sender: Any?) {
//Option A
// Task {
// Swift.print("Performing some A work...")
// self.model.updateA()
// }
//Option B
// Task.detached {
// Swift.print("Performing some A work...")
// var model = await self.model
// model.updateA()
// await self.update(model: model)
// }
//Option C
Task.detached {
Swift.print("Performing some A work...")
await self.updateModel { model in
var model = model
model.updateA()
return model
}
}
}
@IBAction func operationB(_ sender: Any?) {
//Option A
// Task {
// Swift.print("Performing some B work...")
// self.model.updateB()
// }
//Option B
// Task.detached {
// Swift.print("Performing some B work...")
// var model = await self.model
// model.updateB()
// await self.update(model: model)
// }
//Option C
Task.detached {
Swift.print("Performing some B work...")
await self.updateModel { model in
var model = model
model.updateB()
return model
}
}
}
}
Clicking 'Operation A' and then 'Operation B' should result in a model with two true
's. But it doesn't always.
Is there a way to make sure that operation A completes before I get to operation B and have the Main thread available for GUI updates?
EDIT
Based on Rob's answer I came up with the following. I modified it this way because I can then wait on the created operation and report any error to the original caller. I thought it easier to comprehend what's happening by including all code inside a single update
function, so I choose to go for a detached task instead of an actor
. I also return the intermediate model from the task, as otherwise an old model might be used.
class Document {
func updateModel(operation: @escaping (Model) throws -> Model) async throws {
//Update the model in the background
let modelTask = Task.detached { [previousTask, model] () throws -> Model in
var model = model
//Check whether we're cancelled
try Task.checkCancellation()
//Check whether we need to wait on earlier task(s)
if let previousTask = previousTask {
//If the preceding task succeeds we use its model
do {
model = try await previousTask.value
} catch {
throw CancellationError()
}
}
return try operation(model)
}
previousTask = modelTask
defer { previousTask = nil } //Make sure a later task can always start if we throw
//Wait for the operation to finish and store the model
do {
self.model = try await modelTask.value
} catch {
if error is CancellationError { return }
else { throw error }
}
}
}
Call side:
@IBAction func operationA(_ sender: Any?) {
//Option D
Task {
do {
try await updateModel { model in
var model = model
model.updateA()
return model
}
} catch {
presentError(error)
}
}
}
It seems to do anything I need, which is queue'ing updates to a property on a document, which can be awaited for and have errors returned, much like if everything happened on the main thread.
The only drawback seems to be that on the call side the closure is very verbose due to the need to make the model a var
and return it explicitly.
await
anywhere, no other actor code can run (operation B) until the first code (operation A) has finished. – Folkwaysasync/await
code. Use Task.sleep. If you say Thread.sleep on the main thread, yes, you will freeze the GUI. But not Task.sleep! – FolkwaysThread.sleep
here to simulate a long running (CPU consuming) work load, not an asynchronous wait. The problem with the actor here is that it needs theawait
call to fetch and restore the model on the document (which is MainActor bound) and that's exactly where it all goes wrong. So I'm wondering how to properly fix this. – Neologizeactor A
that way it will serialise the execution and won't be on the main thread. If it involves asynchronous functions await on them – Pithecanthropus