I'm having issues with implementing custom activation functions in Pytorch, such as Swish. How should I go about implementing and using custom activation functions in Pytorch?
There are four possibilities depending on what you are looking for. You will need to ask yourself two questions:
Q1) Will your activation function have learnable parameters?
If yes, you have no choice but to create your activation function as an nn.Module
class because you need to store those weights.
If no, you are free to simply create a normal function, or a class, depending on what is convenient for you.
Q2) Can your activation function be expressed as a combination of existing PyTorch functions?
If yes, you can simply write it as a combination of existing PyTorch function and won't need to create a backward
function which defines the gradient.
If no you will need to write the gradient by hand.
Example 1: SiLU function
The SiLU function f(x) = x * sigmoid(x)
does not have any learned weights and can be written entirely with existing PyTorch functions, thus you can simply define it as a function:
def silu(x):
return x * torch.sigmoid(x)
and then simply use it as you would have torch.relu
or any other activation function.
Example 2: SiLU with learned slope
In this case you have one learned parameter, the slope, thus you need to make a class of it.
class LearnedSiLU(nn.Module):
def __init__(self, slope = 1):
super().__init__()
self.slope = slope * torch.nn.Parameter(torch.ones(1))
def forward(self, x):
return self.slope * x * torch.sigmoid(x)
Example 3: with backward
If you have something for which you need to create your own gradient function, you can look at this example: Pytorch: define custom function
You can write a customized activation function like below (e.g. weighted Tanh).
class weightedTanh(nn.Module):
def __init__(self, weights = 1):
super().__init__()
self.weights = weights
def forward(self, input):
ex = torch.exp(2*self.weights*input)
return (ex-1)/(ex+1)
Don’t bother about backpropagation if you use autograd
compatible operations.
I wrote the following SinActivation
sub-class of nn.Module
to implement the sin
activation function.
class SinActivation(torch.nn.Module):
def __init__(self):
super(SinActivation, self).__init__()
return
def forward(self, x):
return torch.sin(x)
© 2022 - 2024 — McMap. All rights reserved.