I think you can use mask
and add parameter skipna=True
to mean
instead dropna
. Also need change condition to data.artist_hotness == 0
if need replace 0
values or data.artist_hotness.isnull()
if need replace NaN
values:
import pandas as pd
import numpy as np
data = pd.DataFrame({'artist_hotness': [0,1,5,np.nan]})
print (data)
artist_hotness
0 0.0
1 1.0
2 5.0
3 NaN
mean_artist_hotness = data['artist_hotness'].mean(skipna=True)
print (mean_artist_hotness)
2.0
data['artist_hotness']=data.artist_hotness.mask(data.artist_hotness == 0,mean_artist_hotness)
print (data)
artist_hotness
0 2.0
1 1.0
2 5.0
3 NaN
Alternatively use loc
, but omit column name:
data.loc[data.artist_hotness == 0, 'artist_hotness'] = mean_artist_hotness
print (data)
artist_hotness
0 2.0
1 1.0
2 5.0
3 NaN
data.artist_hotness.loc[data.artist_hotness == 0, 'artist_hotness'] = mean_artist_hotness
print (data)
IndexingError: (0 True
1 False
2 False
3 False
Name: artist_hotness, dtype: bool, 'artist_hotness')
Another solution is DataFrame.replace
with specifying columns:
data=data.replace({'artist_hotness': {0: mean_artist_hotness}})
print (data)
aa artist_hotness
0 0.0 2.0
1 1.0 1.0
2 5.0 5.0
3 NaN NaN
Or if need replace all 0
values in all columns:
import pandas as pd
import numpy as np
data = pd.DataFrame({'artist_hotness': [0,1,5,np.nan], 'aa': [0,1,5,np.nan]})
print (data)
aa artist_hotness
0 0.0 0.0
1 1.0 1.0
2 5.0 5.0
3 NaN NaN
mean_artist_hotness = data['artist_hotness'].mean(skipna=True)
print (mean_artist_hotness)
2.0
data=data.replace(0,mean_artist_hotness)
print (data)
aa artist_hotness
0 2.0 2.0
1 1.0 1.0
2 5.0 5.0
3 NaN NaN
If need replace NaN
in all columns use DataFrame.fillna
:
data=data.fillna(mean_artist_hotness)
print (data)
aa artist_hotness
0 0.0 0.0
1 1.0 1.0
2 5.0 5.0
3 2.0 2.0
But if only in some columns use Series.fillna
:
data['artist_hotness'] = data.artist_hotness.fillna(mean_artist_hotness)
print (data)
aa artist_hotness
0 0.0 0.0
1 1.0 1.0
2 5.0 5.0
3 NaN 2.0