The complete code for exporting the model: (I've already trained it and now loading from weights file)
def cnn_layers(inputs):
conv_base= keras.applications.mobilenetv2.MobileNetV2(input_shape=(224,224,3), input_tensor=inputs, include_top=False, weights='imagenet')
for layer in conv_base.layers[:-200]:
layer.trainable = False
last_layer = conv_base.output
x = GlobalAveragePooling2D()(last_layer)
x= keras.layers.GaussianNoise(0.3)(x)
x = Dense(1024,name='fc-1')(x)
x = keras.layers.BatchNormalization()(x)
x = keras.layers.advanced_activations.LeakyReLU(0.3)(x)
x = Dropout(0.4)(x)
x = Dense(512,name='fc-2')(x)
x = keras.layers.BatchNormalization()(x)
x = keras.layers.advanced_activations.LeakyReLU(0.3)(x)
x = Dropout(0.3)(x)
out = Dense(10, activation='softmax',name='output_layer')(x)
return out
model_input = layers.Input(shape=(224,224,3))
model_output = cnn_layers(model_input)
test_model = keras.models.Model(inputs=model_input, outputs=model_output)
weight_path = os.path.join(tempfile.gettempdir(), 'saved_wt.h5')
test_model.load_weights(weight_path)
export_path='export'
from tensorflow.python.saved_model import builder as saved_model_builder
from tensorflow.python.saved_model import utils
from tensorflow.python.saved_model import tag_constants, signature_constants
from tensorflow.python.saved_model.signature_def_utils_impl import build_signature_def, predict_signature_def
from tensorflow.contrib.session_bundle import exporter
builder = saved_model_builder.SavedModelBuilder(export_path)
signature = predict_signature_def(inputs={'image': test_model.input},
outputs={'prediction': test_model.output})
with K.get_session() as sess:
builder.add_meta_graph_and_variables(sess=sess,
tags=[tag_constants.SERVING],
signature_def_map={'predict': signature})
builder.save()
And the output of (dir 1
has saved_model.pb
and models
dir) :
python /tensorflow/python/tools/saved_model_cli.py show --dir /1 --all
is
MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:
signature_def['predict']:
The given SavedModel SignatureDef contains the following input(s):
inputs['image'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 224, 224, 3)
name: input_1:0
The given SavedModel SignatureDef contains the following output(s):
outputs['prediction'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 107)
name: output_layer/Softmax:0
Method name is: tensorflow/serving/predict
To accept b64 string:
The code was written for (224, 224, 3)
numpy array. So, the modifications I made for the above code are:
_bytes
should be added to input when passing asb64
. So,
predict_signature_def(inputs={'image':......
changed to
predict_signature_def(inputs={'image_bytes':.....
- Earlier,
type(test_model.input)
is :(224, 224, 3)
anddtype: DT_FLOAT
. So,
signature = predict_signature_def(inputs={'image': test_model.input},.....
changed to (reference)
temp = tf.placeholder(shape=[None], dtype=tf.string)
signature = predict_signature_def(inputs={'image_bytes': temp},.....
Edit:
Code to send using requests is : (As mentioned in the comments)
encoded_image = None
with open('/1.jpg', "rb") as image_file:
encoded_image = base64.b64encode(image_file.read())
object_for_api = {"signature_name": "predict",
"instances": [
{
"image_bytes":{"b64":encoded_image}
#"b64":encoded_image (or this way since "image" is not needed)
}]
}
p=requests.post(url='http://localhost:8501/v1/models/mnist:predict', json=json.dumps(object_for_api),headers=headers)
print(p)
I'm getting <Response [400]>
error. I think there's no error in the way I'm sending. Something needs to be changed in the code for exporting the model and specifically in
temp = tf.placeholder(shape=[None], dtype=tf.string)
.