Quite right to construct a recursive functor by taking the fixpoint of a bifunctor, because 1 + 1 = 2. The list node structure is given as a container with 2 sorts of substructure: "elements" and "sublists".
It can be troubling that we need a whole other notion of Functor
(which captures a rather specific variety of functor, despite its rather general name), to construct a Functor
as a fixpoint. We can, however (as a bit of a stunt), shift to a slightly more general notion of functor which is closed under fixpoints.
type p -:> q = forall i. p i -> q i
class FunctorIx (f :: (i -> *) -> (o -> *)) where
mapIx :: (p -:> q) -> f p -:> f q
These are the functors on indexed sets, so the names are not just gratuitous homages to Goscinny and Uderzo. You can think of o
as "sorts of structure" and i
as "sorts of substructure". Here's an example, based on the fact that 1 + 1 = 2.
data ListF :: (Either () () -> *) -> (() -> *) where
Nil :: ListF p '()
Cons :: p (Left '()) -> p (Right '()) -> ListF p '()
instance FunctorIx ListF where
mapIx f Nil = Nil
mapIx f (Cons a b) = Cons (f a) (f b)
To exploit the choice of substructure sort, we'll need a kind of type-level case analysis. We can't get away with a type function, as
- we need it to be partially applied, and that's not allowed;
- we need a bit at run time to tell us which sort is present.
data Case :: (i -> *) -> (j -> *) -> (Either i j -> *) where
CaseL :: p i -> Case p q (Left i)
CaseR :: q j -> Case p q (Right j)
caseMap :: (p -:> p') -> (q -:> q') -> Case p q -:> Case p' q'
caseMap f g (CaseL p) = CaseL (f p)
caseMap f g (CaseR q) = CaseR (g q)
And now we can take the fixpoint:
data Mu :: ((Either i j -> *) -> (j -> *)) ->
((i -> *) -> (j -> *)) where
In :: f (Case p (Mu f p)) j -> Mu f p j
In each substructure position, we do a case split to see whether we should have a p
-element or a Mu f p
substructure. And we get its functoriality.
instance FunctorIx f => FunctorIx (Mu f) where
mapIx f (In fpr) = In (mapIx (caseMap f (mapIx f)) fpr)
To build lists from these things, we need to juggle between *
and () -> *
.
newtype K a i = K {unK :: a}
type List a = Mu ListF (K a) '()
pattern NilP :: List a
pattern NilP = In Nil
pattern ConsP :: a -> List a -> List a
pattern ConsP a as = In (Cons (CaseL (K a)) (CaseR as))
Now, for lists, we get
map' :: (a -> b) -> List a -> List b
map' f = mapIx (K . f . unK)
Mu
a fixpoint operator. Can you maybe explain that? I'm also struggling to see how this mechanism improves (theoretically) over the (admittedly rather annoying) profusion ofFunctor
,Bifunctor
,Trifunctor
, etc., classes. This probably just reflects the limits of my own understanding of these abstract notions, but I'm probably not the only one who doesn't quite get it. – Flagstaff