For reference, here is the best implementation of a declarative factorial
predicate I could come up with.
Two main points are different from @false's answer:
It uses an accumulator argument, and recursive calls increment the factor we multiply the factorial with, instead of a standard recursive implementation where the base case is 0
. This makes the predicate much faster when the factorial is known and the initial number is not.
It uses if_/3
and (=)/3
extensively, from module reif
, to get rid of unnecessary choice points when possible. It also uses (#>)/3
and the reified (===)/6
which is a variation of (=)/3
for cases where we have two couples that can be used for the if -> then
part of if_
.
factorial/2
factorial(N, F) :-
factorial(N, 0, 1, F).
factorial(N, I, N0, F) :-
F #> 0,
N #>= 0,
I #>= 0,
I #=< N,
N0 #> 0,
N0 #=< F,
if_(I #> 2,
( F #> N,
if_(===(N, I, N0, F, T1),
if_(T1 = true,
N0 = F,
N = I
),
( J #= I + 1,
N1 #= N0*J,
factorial(N, J, N1, F)
)
)
),
if_(N = I,
N0 = F,
( J #= I + 1,
N1 #= N0*J,
factorial(N, J, N1, F)
)
)
).
(#>)/3
#>(X, Y, T) :-
zcompare(C, X, Y),
greater_true(C, T).
greater_true(>, true).
greater_true(<, false).
greater_true(=, false).
(===)/6
===(X1, Y1, X2, Y2, T1, T) :-
( T1 == true -> =(X1, Y1, T)
; T1 == false -> =(X2, Y2, T)
; X1 == Y1 -> T1 = true, T = true
; X1 \= Y1 -> T1 = true, T = false
; X2 == Y2 -> T1 = false, T = true
; X2 \= Y2 -> T1 = false, T = false
; T1 = true, T = true, X1 = Y1
; T1 = true, T = false, dif(X1, Y1)
).
Some queries
?- factorial(N, N).
N = 1 ;
N = 2 ;
false. % One could probably get rid of the choice point at the cost of readability
?- factorial(N, 1).
N = 0 ;
N = 1 ;
false. % Same
?- factorial(10, N).
N = 3628800. % No choice point
?- time(factorial(N, 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000)).
% 79,283 inferences, 0.031 CPU in 0.027 seconds (116% CPU, 2541106 Lips)
N = 100. % No choice point
?- time(factorial(N, 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518284253697920827223758251185210916864000000000000000000000000)).
% 78,907 inferences, 0.031 CPU in 0.025 seconds (125% CPU, 2529054 Lips)
false.
?- F #> 10^100, factorial(N, F).
F = 11978571669969891796072783721689098736458938142546425857555362864628009582789845319680000000000000000,
N = 70 ;
F = 850478588567862317521167644239926010288584608120796235886430763388588680378079017697280000000000000000,
N = 71 ;
F = 61234458376886086861524070385274672740778091784697328983823014963978384987221689274204160000000000000000,
N = 72 ;
...