How do I add a color
column to the following dataframe so that color='green'
if Set == 'Z'
, and color='red'
otherwise?
Type Set
1 A Z
2 B Z
3 B X
4 C Y
How do I add a color
column to the following dataframe so that color='green'
if Set == 'Z'
, and color='red'
otherwise?
Type Set
1 A Z
2 B Z
3 B X
4 C Y
If you only have two choices to select from then use np.where
:
df['color'] = np.where(df['Set']=='Z', 'green', 'red')
For example,
import pandas as pd
import numpy as np
df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
df['color'] = np.where(df['Set']=='Z', 'green', 'red')
print(df)
yields
Set Type color
0 Z A green
1 Z B green
2 X B red
3 Y C red
If you have more than two conditions then use np.select
. For example, if you want color
to be
yellow
when (df['Set'] == 'Z') & (df['Type'] == 'A')
blue
when (df['Set'] == 'Z') & (df['Type'] == 'B')
purple
when (df['Type'] == 'B')
black
,then use
df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
conditions = [
(df['Set'] == 'Z') & (df['Type'] == 'A'),
(df['Set'] == 'Z') & (df['Type'] == 'B'),
(df['Type'] == 'B')]
choices = ['yellow', 'blue', 'purple']
df['color'] = np.select(conditions, choices, default='black')
print(df)
which yields
Set Type color
0 Z A yellow
1 Z B blue
2 X B purple
3 Y C black
List comprehension is another way to create another column conditionally. If you are working with object dtypes in columns, like in your example, list comprehensions typically outperform most other methods.
Example list comprehension:
df['color'] = ['red' if x == 'Z' else 'green' for x in df['Set']]
%timeit tests:
import pandas as pd
import numpy as np
df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
%timeit df['color'] = ['red' if x == 'Z' else 'green' for x in df['Set']]
%timeit df['color'] = np.where(df['Set']=='Z', 'green', 'red')
%timeit df['color'] = df.Set.map( lambda x: 'red' if x == 'Z' else 'green')
1000 loops, best of 3: 239 µs per loop
1000 loops, best of 3: 523 µs per loop
1000 loops, best of 3: 263 µs per loop
pd.DataFrame({'Type':list('ABBC')*100000, 'Set':list('ZZXY')*100000})
-size), numpy.where
outpaces map
, but the list comprehension is king (about 50% faster than numpy.where
). –
Farris df['color'] = ['red' if (x['Set'] == 'Z') & (x['Type'] == 'B') else 'green' for x in df]
–
Skittish df['color_type'] = np.where(df['Set']=='Z', 'green', df['Type'])
–
Redeem .iterrows()
is notoriously sluggish and the DataFrame shouldn't be modified while iterating. –
Crypt The following is slower than the approaches timed here, but we can compute the extra column based on the contents of more than one column, and more than two values can be computed for the extra column.
Simple example using just the "Set" column:
def set_color(row):
if row["Set"] == "Z":
return "red"
else:
return "green"
df = df.assign(color=df.apply(set_color, axis=1))
print(df)
Set Type color
0 Z A red
1 Z B red
2 X B green
3 Y C green
Example with more colours and more columns taken into account:
def set_color(row):
if row["Set"] == "Z":
return "red"
elif row["Type"] == "C":
return "blue"
else:
return "green"
df = df.assign(color=df.apply(set_color, axis=1))
print(df)
Set Type color
0 Z A red
1 Z B red
2 X B green
3 Y C blue
It is also possible to use plydata to do this kind of things (this seems even slower than using assign
and apply
, though).
from plydata import define, if_else
Simple if_else
:
df = define(df, color=if_else('Set=="Z"', '"red"', '"green"'))
print(df)
Set Type color
0 Z A red
1 Z B red
2 X B green
3 Y C green
Nested if_else
:
df = define(df, color=if_else(
'Set=="Z"',
'"red"',
if_else('Type=="C"', '"green"', '"blue"')))
print(df)
Set Type color
0 Z A red
1 Z B red
2 X B blue
3 Y C green
Another way in which this could be achieved is
df['color'] = df.Set.map( lambda x: 'red' if x == 'Z' else 'green')
You can simply use the powerful .loc
method and use one condition or several depending on your need (tested with pandas=1.0.5).
Code Summary:
df=pd.DataFrame(dict(Type='A B B C'.split(), Set='Z Z X Y'.split()))
df['Color'] = "red"
df.loc[(df['Set']=="Z"), 'Color'] = "green"
#practice!
df.loc[(df['Set']=="Z")&(df['Type']=="B")|(df['Type']=="C"), 'Color'] = "purple"
Explanation:
df=pd.DataFrame(dict(Type='A B B C'.split(), Set='Z Z X Y'.split()))
# df so far:
Type Set
0 A Z
1 B Z
2 B X
3 C Y
add a 'color' column and set all values to "red"
df['Color'] = "red"
Apply your single condition:
df.loc[(df['Set']=="Z"), 'Color'] = "green"
# df:
Type Set Color
0 A Z green
1 B Z green
2 B X red
3 C Y red
or multiple conditions if you want:
df.loc[(df['Set']=="Z")&(df['Type']=="B")|(df['Type']=="C"), 'Color'] = "purple"
You can read on Pandas logical operators and conditional selection here: Logical operators for boolean indexing in Pandas
Here's yet another way to skin this cat, using a dictionary to map new values onto the keys in the list:
def map_values(row, values_dict):
return values_dict[row]
values_dict = {'A': 1, 'B': 2, 'C': 3, 'D': 4}
df = pd.DataFrame({'INDICATOR': ['A', 'B', 'C', 'D'], 'VALUE': [10, 9, 8, 7]})
df['NEW_VALUE'] = df['INDICATOR'].apply(map_values, args = (values_dict,))
What's it look like:
df
Out[2]:
INDICATOR VALUE NEW_VALUE
0 A 10 1
1 B 9 2
2 C 8 3
3 D 7 4
This approach can be very powerful when you have many ifelse
-type statements to make (i.e. many unique values to replace).
And of course you could always do this:
df['NEW_VALUE'] = df['INDICATOR'].map(values_dict)
But that approach is more than three times as slow as the apply
approach from above, on my machine.
And you could also do this, using dict.get
:
df['NEW_VALUE'] = [values_dict.get(v, None) for v in df['INDICATOR']]
.apply()
takes 47 seconds, versus only 5.91 seconds for .map()
. –
Crypt You can use pandas methods where
and mask
:
df['color'] = 'green'
df['color'] = df['color'].where(df['Set']=='Z', other='red')
# Replace values where the condition is False
or
df['color'] = 'red'
df['color'] = df['color'].mask(df['Set']=='Z', other='green')
# Replace values where the condition is True
Alternatively, you can use the method transform
with a lambda function:
df['color'] = df['Set'].transform(lambda x: 'green' if x == 'Z' else 'red')
Output:
Type Set color
1 A Z green
2 B Z green
3 B X red
4 C Y red
Performance comparison from @chai:
import pandas as pd
import numpy as np
df = pd.DataFrame({'Type':list('ABBC')*1000000, 'Set':list('ZZXY')*1000000})
%timeit df['color1'] = 'red'; df['color1'].where(df['Set']=='Z','green')
%timeit df['color2'] = ['red' if x == 'Z' else 'green' for x in df['Set']]
%timeit df['color3'] = np.where(df['Set']=='Z', 'red', 'green')
%timeit df['color4'] = df.Set.map(lambda x: 'red' if x == 'Z' else 'green')
397 ms ± 101 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
976 ms ± 241 ms per loop
673 ms ± 139 ms per loop
796 ms ± 182 ms per loop
if you have only 2 choices, use np.where()
df = pd.DataFrame({'A':range(3)})
df['B'] = np.where(df.A>2, 'yes', 'no')
if you have over 2 choices, maybe apply()
could work
input
arr = pd.DataFrame({'A':list('abc'), 'B':range(3), 'C':range(3,6), 'D':range(6, 9)})
and arr is
A B C D
0 a 0 3 6
1 b 1 4 7
2 c 2 5 8
if you want the column E tobe if arr.A =='a' then arr.B elif arr.A=='b' then arr.C elif arr.A == 'c' then arr.D else something_else
arr['E'] = arr.apply(lambda x: x['B'] if x['A']=='a' else(x['C'] if x['A']=='b' else(x['D'] if x['A']=='c' else 1234)), axis=1)
and finally the arr is
A B C D E
0 a 0 3 6 0
1 b 1 4 7 4
2 c 2 5 8 8
One liner with .apply()
method is following:
df['color'] = df['Set'].apply(lambda set_: 'green' if set_=='Z' else 'red')
After that, df
data frame looks like this:
>>> print(df)
Type Set color
0 A Z green
1 B Z green
2 B X red
3 C Y red
The case_when function from pyjanitor is a wrapper around pd.Series.mask
and offers a chainable/convenient form for multiple conditions:
For a single condition:
df.case_when(
df.col1 == "Z", # condition
"green", # value if True
"red", # value if False
column_name = "color"
)
Type Set color
1 A Z green
2 B Z green
3 B X red
4 C Y red
For multiple conditions:
df.case_when(
df.Set.eq('Z') & df.Type.eq('A'), 'yellow', # condition, result
df.Set.eq('Z') & df.Type.eq('B'), 'blue', # condition, result
df.Type.eq('B'), 'purple', # condition, result
'black', # default if none of the conditions evaluate to True
column_name = 'color'
)
Type Set color
1 A Z yellow
2 B Z blue
3 B X purple
4 C Y black
More examples can be found here
Here is an easy one-liner you can use when you have one or several conditions:
df['color'] = np.select(condlist=[df['Set']=="Z", df['Set']=="Y"], choicelist=["green", "yellow"], default="red")
Easy and good to go!
See more here: https://numpy.org/doc/stable/reference/generated/numpy.select.html
If you're working with massive data, a memoized approach would be best:
# First create a dictionary of manually stored values
color_dict = {'Z':'red'}
# Second, build a dictionary of "other" values
color_dict_other = {x:'green' for x in df['Set'].unique() if x not in color_dict.keys()}
# Next, merge the two
color_dict.update(color_dict_other)
# Finally, map it to your column
df['color'] = df['Set'].map(color_dict)
This approach will be fastest when you have many repeated values. My general rule of thumb is to memoize when: data_size
> 10**4
& n_distinct
< data_size/4
E.x. Memoize in a case 10,000 rows with 2,500 or fewer distinct values.
random.choices()
. –
Crypt A Less verbose approach using np.select
:
a = np.array([['A','Z'],['B','Z'],['B','X'],['C','Y']])
df = pd.DataFrame(a,columns=['Type','Set'])
conditions = [
df['Set'] == 'Z'
]
outputs = [
'Green'
]
# conditions Z is Green, Red Otherwise.
res = np.select(conditions, outputs, 'Red')
res
array(['Green', 'Green', 'Red', 'Red'], dtype='<U5')
df.insert(2, 'new_column',res)
df
Type Set new_column
0 A Z Green
1 B Z Green
2 B X Red
3 C Y Red
df.to_numpy()
array([['A', 'Z', 'Green'],
['B', 'Z', 'Green'],
['B', 'X', 'Red'],
['C', 'Y', 'Red']], dtype=object)
%%timeit conditions = [df['Set'] == 'Z']
outputs = ['Green']
np.select(conditions, outputs, 'Red')
134 µs ± 9.71 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
df2 = pd.DataFrame({'Type':list('ABBC')*1000000, 'Set':list('ZZXY')*1000000})
%%timeit conditions = [df2['Set'] == 'Z']
outputs = ['Green']
np.select(conditions, outputs, 'Red')
188 ms ± 26.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
This is can be done easily using case when
if you have Pandas v2.2.0 (Jan 2024)
example from the release notes:
import pandas as pd
df = pd.DataFrame(dict(a=[1, 2, 3], b=[4, 5, 6]))
default=pd.Series('default', index=df.index)
default.case_when(
caselist=[
(df.a == 1, 'first'), # condition, replacement
(df.a.gt(1) & df.b.eq(5), 'second'), # condition, replacement
],
)
Out[4]:
0 first
1 second
2 default
dtype: object
© 2022 - 2024 — McMap. All rights reserved.
case_when
(a syntax useful in SQL in the context in the OP). See this answer for a demo. – Quipster