How do I create a new column where the values are selected based on existing columns?
Asked Answered
S

14

497

How do I add a color column to the following dataframe so that color='green' if Set == 'Z', and color='red' otherwise?

   Type  Set
1     A    Z
2     B    Z           
3     B    X
4     C    Y
Shanta answered 11/11, 2013 at 18:52 Comment(2)
Related: Create new column based on values from other columns / apply a function of multiple columns, row-wise in Pandas (same idea, but the selection criteria are based on multiple columns)Osbourne
Since pandas 2.2.0, you can use case_when (a syntax useful in SQL in the context in the OP). See this answer for a demo.Quipster
A
1046

If you only have two choices to select from then use np.where:

df['color'] = np.where(df['Set']=='Z', 'green', 'red')

For example,

import pandas as pd
import numpy as np

df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
df['color'] = np.where(df['Set']=='Z', 'green', 'red')
print(df)

yields

  Set Type  color
0   Z    A  green
1   Z    B  green
2   X    B    red
3   Y    C    red

If you have more than two conditions then use np.select. For example, if you want color to be

  • yellow when (df['Set'] == 'Z') & (df['Type'] == 'A')
  • otherwise blue when (df['Set'] == 'Z') & (df['Type'] == 'B')
  • otherwise purple when (df['Type'] == 'B')
  • otherwise black,

then use

df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
conditions = [
    (df['Set'] == 'Z') & (df['Type'] == 'A'),
    (df['Set'] == 'Z') & (df['Type'] == 'B'),
    (df['Type'] == 'B')]
choices = ['yellow', 'blue', 'purple']
df['color'] = np.select(conditions, choices, default='black')
print(df)

which yields

  Set Type   color
0   Z    A  yellow
1   Z    B    blue
2   X    B  purple
3   Y    C   black
Accustom answered 11/11, 2013 at 19:3 Comment(0)
O
186

List comprehension is another way to create another column conditionally. If you are working with object dtypes in columns, like in your example, list comprehensions typically outperform most other methods.

Example list comprehension:

df['color'] = ['red' if x == 'Z' else 'green' for x in df['Set']]

%timeit tests:

import pandas as pd
import numpy as np

df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
%timeit df['color'] = ['red' if x == 'Z' else 'green' for x in df['Set']]
%timeit df['color'] = np.where(df['Set']=='Z', 'green', 'red')
%timeit df['color'] = df.Set.map( lambda x: 'red' if x == 'Z' else 'green')

1000 loops, best of 3: 239 µs per loop
1000 loops, best of 3: 523 µs per loop
1000 loops, best of 3: 263 µs per loop
Obligee answered 2/7, 2015 at 0:27 Comment(6)
Note that, with much larger dataframes (think pd.DataFrame({'Type':list('ABBC')*100000, 'Set':list('ZZXY')*100000})-size), numpy.where outpaces map, but the list comprehension is king (about 50% faster than numpy.where).Farris
Can the list comprehension method be used if the condition needs information from multiple columns? I am looking for something like this (this does not work): df['color'] = ['red' if (x['Set'] == 'Z') & (x['Type'] == 'B') else 'green' for x in df]Skittish
Add iterrows to the dataframe, then you can access multiple columns via row: ['red' if (row['Set'] == 'Z') & (row['Type'] == 'B') else 'green' for index, row in in df.iterrows()]Obligee
Note this nice solution will not work if you need to take replacement values from another series in the data frame, such as df['color_type'] = np.where(df['Set']=='Z', 'green', df['Type'])Redeem
@Obligee Or don't, since .iterrows() is notoriously sluggish and the DataFrame shouldn't be modified while iterating.Crypt
For me, df['color'] = ['red' if x == 'Z' else 'green' for x in df['Set']] is working.Spike
J
30

The following is slower than the approaches timed here, but we can compute the extra column based on the contents of more than one column, and more than two values can be computed for the extra column.

Simple example using just the "Set" column:

def set_color(row):
    if row["Set"] == "Z":
        return "red"
    else:
        return "green"

df = df.assign(color=df.apply(set_color, axis=1))

print(df)
  Set Type  color
0   Z    A    red
1   Z    B    red
2   X    B  green
3   Y    C  green

Example with more colours and more columns taken into account:

def set_color(row):
    if row["Set"] == "Z":
        return "red"
    elif row["Type"] == "C":
        return "blue"
    else:
        return "green"

df = df.assign(color=df.apply(set_color, axis=1))

print(df)
  Set Type  color
0   Z    A    red
1   Z    B    red
2   X    B  green
3   Y    C   blue

Edit (21/06/2019): Using plydata

It is also possible to use plydata to do this kind of things (this seems even slower than using assign and apply, though).

from plydata import define, if_else

Simple if_else:

df = define(df, color=if_else('Set=="Z"', '"red"', '"green"'))

print(df)
  Set Type  color
0   Z    A    red
1   Z    B    red
2   X    B  green
3   Y    C  green

Nested if_else:

df = define(df, color=if_else(
    'Set=="Z"',
    '"red"',
    if_else('Type=="C"', '"green"', '"blue"')))

print(df)                            
  Set Type  color
0   Z    A    red
1   Z    B    red
2   X    B   blue
3   Y    C  green
Judi answered 8/2, 2017 at 13:4 Comment(0)
E
29

Another way in which this could be achieved is

df['color'] = df.Set.map( lambda x: 'red' if x == 'Z' else 'green')
Emotional answered 6/6, 2014 at 4:43 Comment(0)
M
26

You can simply use the powerful .loc method and use one condition or several depending on your need (tested with pandas=1.0.5).

Code Summary:

df=pd.DataFrame(dict(Type='A B B C'.split(), Set='Z Z X Y'.split()))
df['Color'] = "red"
df.loc[(df['Set']=="Z"), 'Color'] = "green"

#practice!
df.loc[(df['Set']=="Z")&(df['Type']=="B")|(df['Type']=="C"), 'Color'] = "purple"

Explanation:

df=pd.DataFrame(dict(Type='A B B C'.split(), Set='Z Z X Y'.split()))

# df so far: 
  Type Set  
0    A   Z 
1    B   Z 
2    B   X 
3    C   Y

add a 'color' column and set all values to "red"

df['Color'] = "red"

Apply your single condition:

df.loc[(df['Set']=="Z"), 'Color'] = "green"


# df: 
  Type Set  Color
0    A   Z  green
1    B   Z  green
2    B   X    red
3    C   Y    red

or multiple conditions if you want:

df.loc[(df['Set']=="Z")&(df['Type']=="B")|(df['Type']=="C"), 'Color'] = "purple"

You can read on Pandas logical operators and conditional selection here: Logical operators for boolean indexing in Pandas

Mikaelamikal answered 6/3, 2019 at 17:51 Comment(0)
F
25

Here's yet another way to skin this cat, using a dictionary to map new values onto the keys in the list:

def map_values(row, values_dict):
    return values_dict[row]

values_dict = {'A': 1, 'B': 2, 'C': 3, 'D': 4}

df = pd.DataFrame({'INDICATOR': ['A', 'B', 'C', 'D'], 'VALUE': [10, 9, 8, 7]})

df['NEW_VALUE'] = df['INDICATOR'].apply(map_values, args = (values_dict,))

What's it look like:

df
Out[2]: 
  INDICATOR  VALUE  NEW_VALUE
0         A     10          1
1         B      9          2
2         C      8          3
3         D      7          4

This approach can be very powerful when you have many ifelse-type statements to make (i.e. many unique values to replace).

And of course you could always do this:

df['NEW_VALUE'] = df['INDICATOR'].map(values_dict)

But that approach is more than three times as slow as the apply approach from above, on my machine.

And you could also do this, using dict.get:

df['NEW_VALUE'] = [values_dict.get(v, None) for v in df['INDICATOR']]
Farris answered 15/2, 2017 at 21:43 Comment(1)
Update: On 100,000,000 rows, 52 string values, .apply() takes 47 seconds, versus only 5.91 seconds for .map().Crypt
H
6

You can use pandas methods where and mask:

df['color'] = 'green'
df['color'] = df['color'].where(df['Set']=='Z', other='red')
# Replace values where the condition is False

or

df['color'] = 'red'
df['color'] = df['color'].mask(df['Set']=='Z', other='green')
# Replace values where the condition is True

Alternatively, you can use the method transform with a lambda function:

df['color'] = df['Set'].transform(lambda x: 'green' if x == 'Z' else 'red')

Output:

  Type Set  color
1    A   Z  green
2    B   Z  green
3    B   X    red
4    C   Y    red

Performance comparison from @chai:

import pandas as pd
import numpy as np
df = pd.DataFrame({'Type':list('ABBC')*1000000, 'Set':list('ZZXY')*1000000})
 
%timeit df['color1'] = 'red'; df['color1'].where(df['Set']=='Z','green')
%timeit df['color2'] = ['red' if x == 'Z' else 'green' for x in df['Set']]
%timeit df['color3'] = np.where(df['Set']=='Z', 'red', 'green')
%timeit df['color4'] = df.Set.map(lambda x: 'red' if x == 'Z' else 'green')

397 ms ± 101 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
976 ms ± 241 ms per loop
673 ms ± 139 ms per loop
796 ms ± 182 ms per loop
Harlow answered 17/1, 2021 at 13:0 Comment(0)
P
3

if you have only 2 choices, use np.where()

df = pd.DataFrame({'A':range(3)})
df['B'] = np.where(df.A>2, 'yes', 'no')

if you have over 2 choices, maybe apply() could work input

arr = pd.DataFrame({'A':list('abc'), 'B':range(3), 'C':range(3,6), 'D':range(6, 9)})

and arr is

    A   B   C   D
0   a   0   3   6
1   b   1   4   7
2   c   2   5   8

if you want the column E tobe if arr.A =='a' then arr.B elif arr.A=='b' then arr.C elif arr.A == 'c' then arr.D else something_else

arr['E'] = arr.apply(lambda x: x['B'] if x['A']=='a' else(x['C'] if x['A']=='b' else(x['D'] if x['A']=='c' else 1234)), axis=1)

and finally the arr is

    A   B   C   D   E
0   a   0   3   6   0
1   b   1   4   7   4
2   c   2   5   8   8
Postbox answered 2/7, 2021 at 8:17 Comment(0)
C
2

One liner with .apply() method is following:

df['color'] = df['Set'].apply(lambda set_: 'green' if set_=='Z' else 'red')

After that, df data frame looks like this:

>>> print(df)
  Type Set  color
0    A   Z  green
1    B   Z  green
2    B   X    red
3    C   Y    red
Contempt answered 10/10, 2019 at 14:30 Comment(0)
P
2

The case_when function from pyjanitor is a wrapper around pd.Series.mask and offers a chainable/convenient form for multiple conditions:

For a single condition:

df.case_when(
    df.col1 == "Z",  # condition
    "green",         # value if True
    "red",           # value if False
    column_name = "color"
    )

  Type Set  color
1    A   Z  green
2    B   Z  green
3    B   X    red
4    C   Y    red

For multiple conditions:

df.case_when(
    df.Set.eq('Z') & df.Type.eq('A'), 'yellow', # condition, result
    df.Set.eq('Z') & df.Type.eq('B'), 'blue',   # condition, result
    df.Type.eq('B'), 'purple',                  # condition, result
    'black',              # default if none of the conditions evaluate to True
    column_name = 'color'  
)
  Type  Set   color
1    A   Z  yellow
2    B   Z    blue
3    B   X  purple
4    C   Y   black

More examples can be found here

Pitsaw answered 18/10, 2021 at 9:11 Comment(0)
R
1

Here is an easy one-liner you can use when you have one or several conditions:

df['color'] = np.select(condlist=[df['Set']=="Z", df['Set']=="Y"], choicelist=["green", "yellow"], default="red")

Easy and good to go!

See more here: https://numpy.org/doc/stable/reference/generated/numpy.select.html

Remittent answered 25/1, 2023 at 19:34 Comment(0)
P
0

If you're working with massive data, a memoized approach would be best:

# First create a dictionary of manually stored values
color_dict = {'Z':'red'}

# Second, build a dictionary of "other" values
color_dict_other = {x:'green' for x in df['Set'].unique() if x not in color_dict.keys()}

# Next, merge the two
color_dict.update(color_dict_other)

# Finally, map it to your column
df['color'] = df['Set'].map(color_dict)

This approach will be fastest when you have many repeated values. My general rule of thumb is to memoize when: data_size > 10**4 & n_distinct < data_size/4

E.x. Memoize in a case 10,000 rows with 2,500 or fewer distinct values.

Pinochle answered 8/12, 2019 at 18:42 Comment(4)
Alright, so with only 2 distinct values to map, 100,000,000 rows, it takes 6.67 seconds to run without "memoization", and 9.86 seconds with.Crypt
100,000,000 rows, 52 distinct values, where 1 of those maps to the first output value, and the other 51 all correspond to the other: 7.99 seconds without memoization, 11.1 seconds with.Crypt
Are your values in random order? Or are they back to back? High speed of pandas could be due to caching @CryptPinochle
Are your values in random order? Or are they back to back? Values are random, selected using random.choices().Crypt
M
0

A Less verbose approach using np.select:

a = np.array([['A','Z'],['B','Z'],['B','X'],['C','Y']])
df = pd.DataFrame(a,columns=['Type','Set'])

conditions = [
    df['Set'] == 'Z'
]

outputs = [
    'Green'
    ]
             # conditions Z is Green, Red Otherwise.
res = np.select(conditions, outputs, 'Red')
res 
array(['Green', 'Green', 'Red', 'Red'], dtype='<U5')
df.insert(2, 'new_column',res)    

df
    Type    Set new_column
0   A   Z   Green
1   B   Z   Green
2   B   X   Red
3   C   Y   Red

df.to_numpy()    
    
array([['A', 'Z', 'Green'],
       ['B', 'Z', 'Green'],
       ['B', 'X', 'Red'],
       ['C', 'Y', 'Red']], dtype=object)

%%timeit conditions = [df['Set'] == 'Z'] 
outputs = ['Green'] 
np.select(conditions, outputs, 'Red')

134 µs ± 9.71 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

df2 = pd.DataFrame({'Type':list('ABBC')*1000000, 'Set':list('ZZXY')*1000000})
%%timeit conditions = [df2['Set'] == 'Z'] 
outputs = ['Green'] 
np.select(conditions, outputs, 'Red')

188 ms ± 26.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Mileage answered 4/3, 2022 at 23:16 Comment(0)
B
0

This is can be done easily using case when if you have Pandas v2.2.0 (Jan 2024)

example from the release notes:

    import pandas as pd

df = pd.DataFrame(dict(a=[1, 2, 3], b=[4, 5, 6]))

default=pd.Series('default', index=df.index)

default.case_when(
     caselist=[
         (df.a == 1, 'first'),                              # condition, replacement
         (df.a.gt(1) & df.b.eq(5), 'second'),  # condition, replacement
     ],
)

Out[4]: 
0      first
1     second
2    default
dtype: object
Biak answered 26/1 at 18:30 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.