I am currently working on a project written in C++ that leverages the CryptoAPI to perform a Diffie-Hellman key exchange. I'm having a bit of trouble getting this to work as the eventual RC4 session key I get cannot be used to encrypt the same text in Python (using pycrypto).
The C++ code to perform the Diffie-Hellman key exchange was taken from msdn, but is included here for posterity:
#include <tchar.h>
#include <windows.h>
#include <wincrypt.h>
#pragma comment(lib, "crypt32.lib")
// The key size, in bits.
#define DHKEYSIZE 512
// Prime in little-endian format.
static const BYTE g_rgbPrime[] =
{
0x91, 0x02, 0xc8, 0x31, 0xee, 0x36, 0x07, 0xec,
0xc2, 0x24, 0x37, 0xf8, 0xfb, 0x3d, 0x69, 0x49,
0xac, 0x7a, 0xab, 0x32, 0xac, 0xad, 0xe9, 0xc2,
0xaf, 0x0e, 0x21, 0xb7, 0xc5, 0x2f, 0x76, 0xd0,
0xe5, 0x82, 0x78, 0x0d, 0x4f, 0x32, 0xb8, 0xcb,
0xf7, 0x0c, 0x8d, 0xfb, 0x3a, 0xd8, 0xc0, 0xea,
0xcb, 0x69, 0x68, 0xb0, 0x9b, 0x75, 0x25, 0x3d,
0xaa, 0x76, 0x22, 0x49, 0x94, 0xa4, 0xf2, 0x8d
};
// Generator in little-endian format.
static BYTE g_rgbGenerator[] =
{
0x02, 0x88, 0xd7, 0xe6, 0x53, 0xaf, 0x72, 0xc5,
0x8c, 0x08, 0x4b, 0x46, 0x6f, 0x9f, 0x2e, 0xc4,
0x9c, 0x5c, 0x92, 0x21, 0x95, 0xb7, 0xe5, 0x58,
0xbf, 0xba, 0x24, 0xfa, 0xe5, 0x9d, 0xcb, 0x71,
0x2e, 0x2c, 0xce, 0x99, 0xf3, 0x10, 0xff, 0x3b,
0xcb, 0xef, 0x6c, 0x95, 0x22, 0x55, 0x9d, 0x29,
0x00, 0xb5, 0x4c, 0x5b, 0xa5, 0x63, 0x31, 0x41,
0x13, 0x0a, 0xea, 0x39, 0x78, 0x02, 0x6d, 0x62
};
BYTE g_rgbData[] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};
int _tmain(int argc, _TCHAR* argv[])
{
UNREFERENCED_PARAMETER(argc);
UNREFERENCED_PARAMETER(argv);
BOOL fReturn;
HCRYPTPROV hProvParty1 = NULL;
HCRYPTPROV hProvParty2 = NULL;
DATA_BLOB P;
DATA_BLOB G;
HCRYPTKEY hPrivateKey1 = NULL;
HCRYPTKEY hPrivateKey2 = NULL;
PBYTE pbKeyBlob1 = NULL;
PBYTE pbKeyBlob2 = NULL;
HCRYPTKEY hSessionKey1 = NULL;
HCRYPTKEY hSessionKey2 = NULL;
PBYTE pbData = NULL;
/************************
Construct data BLOBs for the prime and generator. The P and G
values, represented by the g_rgbPrime and g_rgbGenerator arrays
respectively, are shared values that have been agreed to by both
parties.
************************/
P.cbData = DHKEYSIZE/8;
P.pbData = (BYTE*)(g_rgbPrime);
G.cbData = DHKEYSIZE/8;
G.pbData = (BYTE*)(g_rgbGenerator);
/************************
Create the private Diffie-Hellman key for party 1.
************************/
// Acquire a provider handle for party 1.
fReturn = CryptAcquireContext(
&hProvParty1,
NULL,
MS_ENH_DSS_DH_PROV,
PROV_DSS_DH,
CRYPT_VERIFYCONTEXT);
if(!fReturn)
{
goto ErrorExit;
}
// Create an ephemeral private key for party 1.
fReturn = CryptGenKey(
hProvParty1,
CALG_DH_EPHEM,
DHKEYSIZE << 16 | CRYPT_EXPORTABLE | CRYPT_PREGEN,
&hPrivateKey1);
if(!fReturn)
{
goto ErrorExit;
}
// Set the prime for party 1's private key.
fReturn = CryptSetKeyParam(
hPrivateKey1,
KP_P,
(PBYTE)&P,
0);
if(!fReturn)
{
goto ErrorExit;
}
// Set the generator for party 1's private key.
fReturn = CryptSetKeyParam(
hPrivateKey1,
KP_G,
(PBYTE)&G,
0);
if(!fReturn)
{
goto ErrorExit;
}
// Generate the secret values for party 1's private key.
fReturn = CryptSetKeyParam(
hPrivateKey1,
KP_X,
NULL,
0);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Create the private Diffie-Hellman key for party 2.
************************/
// Acquire a provider handle for party 2.
fReturn = CryptAcquireContext(
&hProvParty2,
NULL,
MS_ENH_DSS_DH_PROV,
PROV_DSS_DH,
CRYPT_VERIFYCONTEXT);
if(!fReturn)
{
goto ErrorExit;
}
// Create an ephemeral private key for party 2.
fReturn = CryptGenKey(
hProvParty2,
CALG_DH_EPHEM,
DHKEYSIZE << 16 | CRYPT_EXPORTABLE | CRYPT_PREGEN,
&hPrivateKey2);
if(!fReturn)
{
goto ErrorExit;
}
// Set the prime for party 2's private key.
fReturn = CryptSetKeyParam(
hPrivateKey2,
KP_P,
(PBYTE)&P,
0);
if(!fReturn)
{
goto ErrorExit;
}
// Set the generator for party 2's private key.
fReturn = CryptSetKeyParam(
hPrivateKey2,
KP_G,
(PBYTE)&G,
0);
if(!fReturn)
{
goto ErrorExit;
}
// Generate the secret values for party 2's private key.
fReturn = CryptSetKeyParam(
hPrivateKey2,
KP_X,
NULL,
0);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Export Party 1's public key.
************************/
// Public key value, (G^X) mod P is calculated.
DWORD dwDataLen1;
// Get the size for the key BLOB.
fReturn = CryptExportKey(
hPrivateKey1,
NULL,
PUBLICKEYBLOB,
0,
NULL,
&dwDataLen1);
if(!fReturn)
{
goto ErrorExit;
}
// Allocate the memory for the key BLOB.
if(!(pbKeyBlob1 = (PBYTE)malloc(dwDataLen1)))
{
goto ErrorExit;
}
// Get the key BLOB.
fReturn = CryptExportKey(
hPrivateKey1,
0,
PUBLICKEYBLOB,
0,
pbKeyBlob1,
&dwDataLen1);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Export Party 2's public key.
************************/
// Public key value, (G^X) mod P is calculated.
DWORD dwDataLen2;
// Get the size for the key BLOB.
fReturn = CryptExportKey(
hPrivateKey2,
NULL,
PUBLICKEYBLOB,
0,
NULL,
&dwDataLen2);
if(!fReturn)
{
goto ErrorExit;
}
// Allocate the memory for the key BLOB.
if(!(pbKeyBlob2 = (PBYTE)malloc(dwDataLen2)))
{
goto ErrorExit;
}
// Get the key BLOB.
fReturn = CryptExportKey(
hPrivateKey2,
0,
PUBLICKEYBLOB,
0,
pbKeyBlob2,
&dwDataLen2);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Party 1 imports party 2's public key.
The imported key will contain the new shared secret
key (Y^X) mod P.
************************/
fReturn = CryptImportKey(
hProvParty1,
pbKeyBlob2,
dwDataLen2,
hPrivateKey1,
0,
&hSessionKey2);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Party 2 imports party 1's public key.
The imported key will contain the new shared secret
key (Y^X) mod P.
************************/
fReturn = CryptImportKey(
hProvParty2,
pbKeyBlob1,
dwDataLen1,
hPrivateKey2,
0,
&hSessionKey1);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Convert the agreed keys to symmetric keys. They are currently of
the form CALG_AGREEDKEY_ANY. Convert them to CALG_RC4.
************************/
ALG_ID Algid = CALG_RC4;
// Enable the party 1 public session key for use by setting the
// ALGID.
fReturn = CryptSetKeyParam(
hSessionKey1,
KP_ALGID,
(PBYTE)&Algid,
0);
if(!fReturn)
{
goto ErrorExit;
}
// Enable the party 2 public session key for use by setting the
// ALGID.
fReturn = CryptSetKeyParam(
hSessionKey2,
KP_ALGID,
(PBYTE)&Algid,
0);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Encrypt some data with party 1's session key.
************************/
// Get the size.
DWORD dwLength = sizeof(g_rgbData);
fReturn = CryptEncrypt(
hSessionKey1,
0,
TRUE,
0,
NULL,
&dwLength,
sizeof(g_rgbData));
if(!fReturn)
{
goto ErrorExit;
}
// Allocate a buffer to hold the encrypted data.
pbData = (PBYTE)malloc(dwLength);
if(!pbData)
{
goto ErrorExit;
}
// Copy the unencrypted data to the buffer. The data will be
// encrypted in place.
memcpy(pbData, g_rgbData, sizeof(g_rgbData));
// Encrypt the data.
dwLength = sizeof(g_rgbData);
fReturn = CryptEncrypt(
hSessionKey1,
0,
TRUE,
0,
pbData,
&dwLength,
sizeof(g_rgbData));
if(!fReturn)
{
goto ErrorExit;
}
/************************
Decrypt the data with party 2's session key.
************************/
dwLength = sizeof(g_rgbData);
fReturn = CryptDecrypt(
hSessionKey2,
0,
TRUE,
0,
pbData,
&dwLength);
if(!fReturn)
{
goto ErrorExit;
}
ErrorExit:
if(pbData)
{
free(pbData);
pbData = NULL;
}
if(hSessionKey2)
{
CryptDestroyKey(hSessionKey2);
hSessionKey2 = NULL;
}
if(hSessionKey1)
{
CryptDestroyKey(hSessionKey1);
hSessionKey1 = NULL;
}
if(pbKeyBlob2)
{
free(pbKeyBlob2);
pbKeyBlob2 = NULL;
}
if(pbKeyBlob1)
{
free(pbKeyBlob1);
pbKeyBlob1 = NULL;
}
if(hPrivateKey2)
{
CryptDestroyKey(hPrivateKey2);
hPrivateKey2 = NULL;
}
if(hPrivateKey1)
{
CryptDestroyKey(hPrivateKey1);
hPrivateKey1 = NULL;
}
if(hProvParty2)
{
CryptReleaseContext(hProvParty2, 0);
hProvParty2 = NULL;
}
if(hProvParty1)
{
CryptReleaseContext(hProvParty1, 0);
hProvParty1 = NULL;
}
return 0;
}
I believe that I can complete the Diffie-Hellman key exchange in Python, as I can generate the same public and private keys without error. I've based my Diffie-Hellman key exchange on this repository.
I haven't been able to test this, however as I can't seem to get the shared secret exported from the C++ code (similar to this thread, that was never satisfactorily answered). I can however get the RC4 session key with the following code:
// Get the key length
DWORD keylen;
CryptExportKey(
hSessionKey1,
NULL,
PLAINTEXTKEYBLOB,
0,
NULL,
&keylen);
// Get the session key
CryptExportKey(
hSessionKey1,
NULL,
PLAINTEXTKEYBLOB,
0,
encKey,
&keylen);
The output from this function gets me:
08 02 00 00 01 68 00 00 10 00 00 00 75 2c 59 8c 6e e0 8c 9f ed 30 17 7e 9d a5 85 2b
I know there is a 12 byte header+length on this, so that leaves me with the following 16 byte RC4 session key:
75 2c 59 8c 6e e0 8c 9f ed 30 17 7e 9d a5 85 2b
So I am currently trying to validate that I can encrypt the same plaintext using the RC4 that I have acquired from the CryptExportKey
. I am currently trying to encrypt g_rgbData
from the C++ code above, which is set to:
BYTE g_rgbData[] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};
With the C++ code I get the following encrypted output:
cc 94 aa ec 86 6e a8 26
Using pycrypto I have the following code:
from Crypto.Cipher import ARC4
key = '75 2c 59 8c 6e e0 8c 9f ed 30 17 7e 9d a5 85 2b'
key = key.replace(' ', '').decode('hex')
plaintext = '0102030405060708'
plaintext = plaintext.replace(' ', '').decode('hex')
rc4 = ARC4.new(key)
encrypted = rc4.encrypt(plaintext)
print encrypted.encode('hex')
This results in the following output:
00 5b 64 25 4e a5 62 e3
Which doesn't match the C++ output. I've played around with endianess, but I suspect something else might be going on.
Sorry if this is long winded, but it brings me to my two questions:
Whenever you transition from the shared key to RC4 (using
CryptSetKeyParam
withCALG_RC4
), what is actually going on under the hood here? I can't seem to find any information about this process anywhere so that I can implement it in Python.Any idea why my RC4 will not work with the same key and the same plaintext in Python?
Any help would be greatly appreciated!