I have this image of a table (seen below). And I'm trying to get the data from the table, similar to this form (first row of table image):
rows[0] = [x,x, , , , ,x, ,x,x, ,x, ,x, , , , ,x, , , ,x,x,x, ,x, ,x, , , , ]
I need the number of x's as well as the number of spaces. There will also be other table images that are similar to this one (all having x's and the same number of columns).
So far, I am able to detect all of the x's using an image of an x. And I can somewhat detect the lines. I'm using open cv2 for python. I'm also using a houghTransform to detect the horizontal and vertical lines (that works really well).
I'm trying to figure out how I can go row by row and store the information in a list.
These are the training images: used to detect x (train1.png in the code)
used to detect lines (train2.png in the code)
used to detect lines (train3.png in the code)
This is the code I have so far:
# process images
from pytesser import *
from PIL import Image
from matplotlib import pyplot as plt
import pytesseract
import numpy as np
import cv2
import math
import os
# the table images
images = ['table1.png', 'table2.png', 'table3.png', 'table4.png', 'table5.png']
# the template images used for training
templates = ['train1.png', 'train2.png', 'train3.png']
def hough_transform(im):
img = cv2.imread('imgs/'+im)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
lines = cv2.HoughLines(edges, 1, np.pi/180, 200)
i = 1
for rho, theta in lines[0]:
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
x1 = int(x0 + 1000*(-b))
y1 = int(y0 + 1000*(a))
x2 = int(x0 - 1000*(-b))
y2 = int(y0 - 1000*(a))
#print '%s - 0:(%s,%s) 1:(%s,%s), 2:(%s,%s)' % (i,x0,y0,x1,y1,x2,y2)
cv2.line(img, (x1,y1), (x2,y2), (0,0,255), 2)
i += 1
fn = os.path.splitext(im)[0]+'-lines'
cv2.imwrite('imgs/'+fn+'.png', img)
def match_exes(im, te):
img_rgb = cv2.imread('imgs/'+im)
img_gry = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('imgs/'+te, 0)
w, h = template.shape[::-1]
res = cv2.matchTemplate(img_gry, template, cv2.TM_CCOEFF_NORMED)
threshold = 0.71
loc = np.where(res >= threshold)
pts = []
exes = []
blanks = []
for pt in zip(*loc[::-1]):
pts.append(pt)
cv2.rectangle(img_rgb, pt, (pt[0]+w, pt[1]+h), (0,0,255), 1)
fn = os.path.splitext(im)[0]+'-exes'
cv2.imwrite('imgs/'+fn+'.png', img_rgb)
return pts, exes, blanks
def match_horizontal_lines(im, te, te2):
img_rgb = cv2.imread('imgs/'+im)
img_gry = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('imgs/'+te, 0)
w1, h1 = template.shape[::-1]
template2 = cv2.imread('imgs/'+te2, 0)
w2, h2 = template2.shape[::-1]
# first line template (the downward facing line)
res1 = cv2.matchTemplate(img_gry, template, cv2.TM_CCOEFF_NORMED)
threshold1 = 0.8
loc1 = np.where(res1 >= threshold1)
# second line template (the upward facing line)
res2 = cv2.matchTemplate(img_gry, template2, cv2.TM_CCOEFF_NORMED)
threshold2 = 0.8
loc2 = np.where(res2 >= threshold2)
pts = []
exes = []
blanks = []
# find first line template (the downward facing line)
for pt in zip(*loc1[::-1]):
pts.append(pt)
cv2.rectangle(img_rgb, pt, (pt[0]+w1, pt[1]+h1), (0,0,255), 1)
# find second line template (the upward facing line)
for pt in zip(*loc2[::-1]):
pts.append(pt)
cv2.rectangle(img_rgb, pt, (pt[0]+w2, pt[0]+h2), (0,0,255), 1)
fn = os.path.splitext(im)[0]+'-horiz'
cv2.imwrite('imgs/'+fn+'.png', img_rgb)
return pts, exes, blanks
# process
text = ''
for img in images:
print 'processing %s' % img
hough_transform(img)
pts, exes, blanks = match_exes(img, templates[0])
pts1, exes1, blanks1 = match_horizontal_lines(img, templates[1], templates[2])
text += '%s: %s x\'s & %s horizontal lines\n' % (img, len(pts), len(pts1))
# statistics file
outputFile = open('counts.txt', 'w')
outputFile.write(text)
outputFile.close()
And, the output images look like this (as you can see, all x's are detected but not all lines) x's
horizontal lines
hough transform
As I said, I'm actually just trying to get the data from the table, similar to this form (first row of table image):
row a = [x,x, , , , ,x, ,x,x, ,x, ,x, , , , ,x, , , ,x,x,x, ,x, ,x, , , , ]
I need the number of x's as well as the number of spaces. There will also be other table images that are similar to this one (all having x's and the same number of columns and a different number of rows).
Also, I am using python 2.7
x
and update the table accordingly. Unfortunately my Python is fairly weak or I'd post a more concrete answer. – Jupiter