Disclaimer: I'm the author of the package.
For a comparison with other formatters, see Other Formatters.
Formatting
Unlike pprint.pprint
, prettyformatter
spreads vertically more and attempts to align items more.
Unlike json.dumps
, prettyformatter
is usually more compact and attempts to align dictionary values wherever reasonable.
from prettyformatter import pprint
batters = [
{"id": "1001", "type": "Regular"},
{"id": "1002", "type": "Chocolate"},
{"id": "1003", "type": "Blueberry"},
{"id": "1004", "type": "Devil's Food"},
]
toppings = [
{"id": "5001", "type": None},
{"id": "5002", "type": "Glazed"},
{"id": "5005", "type": "Sugar"},
{"id": "5007", "type": "Powdered Sugar"},
{"id": "5006", "type": "Chocolate with Sprinkles"},
{"id": "5003", "type": "Chocolate"},
{"id": "5004", "type": "Maple"},
]
data = {"id": "0001", "type": "donut", "name": "Cake", "ppu": 0.55, "batters": batters, "topping": toppings}
pprint(data)
Output:
{
"id" : "0001",
"type" : "donut",
"name" : "Cake",
"ppu" : 0.55,
"batters":
[
{"id": "1001", "type": "Regular"},
{"id": "1002", "type": "Chocolate"},
{"id": "1003", "type": "Blueberry"},
{"id": "1004", "type": "Devil's Food"},
],
"topping":
[
{"id": "5001", "type": None},
{"id": "5002", "type": "Glazed"},
{"id": "5005", "type": "Sugar"},
{"id": "5007", "type": "Powdered Sugar"},
{"id": "5006", "type": "Chocolate with Sprinkles"},
{"id": "5003", "type": "Chocolate"},
{"id": "5004", "type": "Maple"},
],
}
Features
See here for the full documentation.
JSON
Unlike pprint.pprint
, prettyformatter
supports JSON conversion via the json=True
argument. This includes changing None
to null
, True
to true
, False
to false
, and correct use of quotes.
Unlike json.dumps
, prettyformatter
supports JSON coercion with more data types. This includes changing any dataclass
or mapping
into a dict
and any iterable
into a list
.
from dataclasses import dataclass
from prettyformatter import PrettyDataclass, pprint
@dataclass(unsafe_hash=True)
class Point(PrettyDataclass):
x: int
y: int
pprint((Point(1, 2), Point(3, 4)), json=True)
Output:
[{"x": 1, "y": 2}, {"x": 3, "y": 4}]
Customization
Unlike pprint.pprint
or json.dumps
, prettyformatter
supports easy customization with additional types.
Implementing the __pargs__
and/or __pkwargs__
methods for a prettyformatter.PrettyClass
subclass allows one to easily customize classes in the form of "cls_name(*args, **kwargs)"
.
from prettyformatter import PrettyClass
class Dog(PrettyClass):
def __init__(self, name, **kwargs):
self.name = name
def __pkwargs__(self):
return {"name": self.name}
print(Dog("Fido"))
"""
Dog(name="Fido")
"""
print(Dog("Fido"), json=True)
"""
{"name": "Fido"}
"""
Implementing the __pformat__
method allows even more specific implementations of the pformat
function.
Implementing the @prettyformatter.register
function also allows customizing classes that already exist in the same way implementing __pformat__
would.
import numpy as np
from prettyformatter import pprint, register
@register(np.ndarray)
def pformat_ndarray(obj, specifier, depth, indent, shorten, json):
if json:
return pformat(obj.tolist(), specifier, depth, indent, shorten, json)
with np.printoptions(formatter=dict(all=lambda x: format(x, specifier))):
return repr(obj).replace("\n", "\n" + " " * depth)
pprint(dict.fromkeys("ABC", np.arange(9).reshape(3, 3)))
Output:
{
"A":
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]]),
"B":
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]]),
"C":
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]]),
}
width
parameter. Check out the description – Monniemono