Given a dataframe, I want to groupby the first column and get second column as lists in rows, so that a dataframe like:
a b
A 1
A 2
B 5
B 5
B 4
C 6
becomes
A [1,2]
B [5,5,4]
C [6]
How do I do this?
Given a dataframe, I want to groupby the first column and get second column as lists in rows, so that a dataframe like:
a b
A 1
A 2
B 5
B 5
B 4
C 6
becomes
A [1,2]
B [5,5,4]
C [6]
How do I do this?
You can do this using groupby
to group on the column of interest and then apply
list
to every group:
In [1]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6]})
df
Out[1]:
a b
0 A 1
1 A 2
2 B 5
3 B 5
4 B 4
5 C 6
In [2]: df.groupby('a')['b'].apply(list)
Out[2]:
a
A [1, 2]
B [5, 5, 4]
C [6]
Name: b, dtype: object
In [3]: df1 = df.groupby('a')['b'].apply(list).reset_index(name='new')
df1
Out[3]:
a new
0 A [1, 2]
1 B [5, 5, 4]
2 C [6]
tuple
following the second answer here: #19531068 . See second answer in #27439523 for explanation. –
Chokedamp df.groupby('a')['b'].apply(lambda x:list(set(x)))
–
Bushing c
which also had numbers which had to be put in a list? –
Luminal '0.24.2'
, you'd have to post an example where this fails –
Bushing df.groupby('a')['b'].apply(list).apply(pd.Series)
you get columns with on entry each instead of one column with lists, , which can be very useful. –
Grackle df1 = df.groupby('a')['b','c'].apply(list).reset_index(name='new')
–
Phenol nan
values in cells and I don't want to .apply(list)
add all elements include nan
. How can I do this? –
Hogwash A handy way to achieve this would be:
df.groupby('a').agg({'b':lambda x: list(x)})
Look into writing Custom Aggregations: https://www.kaggle.com/akshaysehgal/how-to-group-by-aggregate-using-py
lambda args: f(args)
is equivalent to f
–
Skaw agg(list)
is enough. Also see here. –
Kick df.groupby('a').apply(list)
or use it with agg as part of a dict df.groupby('a').agg({'b':list})
. You could also use it with lambda (which I recommend) since you can do so much more with it. Example: df.groupby('a').agg({'c':'first', 'b': lambda x: x.unique().tolist()})
which lets you apply a series function to the col c and a unique then a list function to col b. –
Friedrich import numpy as np
df = pd.DataFrame({'a': np.random.randint(0, 60, 600), 'b': [1, 2, 5, 5, 4, 6]*100})
def f(df):
keys, values = df.sort_values('a').values.T
ukeys, index = np.unique(keys, True)
arrays = np.split(values, index[1:])
df2 = pd.DataFrame({'a':ukeys, 'b':[list(a) for a in arrays]})
return df2
In [301]: %timeit f(df)
1000 loops, best of 3: 1.64 ms per loop
In [302]: %timeit df.groupby('a')['b'].apply(list)
100 loops, best of 3: 5.26 ms per loop
.groupby([df.index.month, df.index.day])
instead of just .groupby('a')
? –
Aeolic To solve this for several columns of a dataframe:
In [5]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6],'c'
...: :[3,3,3,4,4,4]})
In [6]: df
Out[6]:
a b c
0 A 1 3
1 A 2 3
2 B 5 3
3 B 5 4
4 B 4 4
5 C 6 4
In [7]: df.groupby('a').agg(lambda x: list(x))
Out[7]:
b c
a
A [1, 2] [3, 3]
B [5, 5, 4] [3, 4, 4]
C [6] [4]
This answer was inspired from Anamika Modi's answer. Thank you!
Use any of the following groupby
and agg
recipes.
# Setup
df = pd.DataFrame({
'a': ['A', 'A', 'B', 'B', 'B', 'C'],
'b': [1, 2, 5, 5, 4, 6],
'c': ['x', 'y', 'z', 'x', 'y', 'z']
})
df
a b c
0 A 1 x
1 A 2 y
2 B 5 z
3 B 5 x
4 B 4 y
5 C 6 z
To aggregate multiple columns as lists, use any of the following:
df.groupby('a').agg(list)
df.groupby('a').agg(pd.Series.tolist)
b c
a
A [1, 2] [x, y]
B [5, 5, 4] [z, x, y]
C [6] [z]
To group-listify a single column only, convert the groupby to a SeriesGroupBy
object, then call SeriesGroupBy.agg
. Use,
df.groupby('a').agg({'b': list}) # 4.42 ms
df.groupby('a')['b'].agg(list) # 2.76 ms - faster
a
A [1, 2]
B [5, 5, 4]
C [6]
Name: b, dtype: object
groupby(..., sort=False)
. Here, it'd make no difference since I'm grouping on column A which is already sorted. –
Kick df.groupby('a')['b'].agg(lambda x: list(set(x)))
–
Kick b
and c
columns, instead just create a column that has all the values. Thank you. –
Ulmaceous df.groupby('a').agg(lambda x: x.to_numpy().ravel().tolist())
–
Kick df.groupby('a')['b'].agg("unique")
–
Goering It is time to use agg
instead of apply
.
When
df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6], 'c': [1,2,5,5,4,6]})
If you want multiple columns stack into list , result in pd.DataFrame
df.groupby('a')[['b', 'c']].agg(list)
# or
df.groupby('a').agg(list)
If you want single column in list, result in ps.Series
df.groupby('a')['b'].agg(list)
#or
df.groupby('a')['b'].apply(list)
Note, result in pd.DataFrame
is about 10x slower than result in ps.Series
when you only aggregate single column, use it in multicolumns case .
As you were saying the groupby
method of a pd.DataFrame
object can do the job.
Example
L = ['A','A','B','B','B','C']
N = [1,2,5,5,4,6]
import pandas as pd
df = pd.DataFrame(zip(L,N),columns = list('LN'))
groups = df.groupby(df.L)
groups.groups
{'A': [0, 1], 'B': [2, 3, 4], 'C': [5]}
which gives and index-wise description of the groups.
To get elements of single groups, you can do, for instance
groups.get_group('A')
L N
0 A 1
1 A 2
groups.get_group('B')
L N
2 B 5
3 B 5
4 B 4
Just a suplement. pandas.pivot_table
is much more universal and seems more convenient:
"""data"""
df = pd.DataFrame( {'a':['A','A','B','B','B','C'],
'b':[1,2,5,5,4,6],
'c':[1,2,1,1,1,6]})
print(df)
a b c
0 A 1 1
1 A 2 2
2 B 5 1
3 B 5 1
4 B 4 1
5 C 6 6
"""pivot_table"""
pt = pd.pivot_table(df,
values=['b', 'c'],
index='a',
aggfunc={'b': list,
'c': set})
print(pt)
b c
a
A [1, 2] {1, 2}
B [5, 5, 4] {1}
C [6] {6}
If looking for a unique list while grouping multiple columns this could probably help:
df.groupby('a').agg(lambda x: list(set(x))).reset_index()
The easiest way I have found to achieve the same thing, at least for one column, which is similar to Anamika's answer, just with the tuple syntax for the aggregate function.
df.groupby('a').agg(b=('b','unique'), c=('c','unique'))
Building upon @B.M answer, here is a more general version and updated to work with newer library version: (numpy version 1.19.2
, pandas version 1.2.1
)
And this solution can also deal with multi-indices:
However this is not heavily tested, use with caution.
import pandas as pd
import numpy as np
np.random.seed(0)
df = pd.DataFrame({'a': np.random.randint(0, 10, 90), 'b': [1,2,3]*30, 'c':list('abcefghij')*10, 'd': list('hij')*30})
def f_multi(df,col_names):
if not isinstance(col_names,list):
col_names = [col_names]
values = df.sort_values(col_names).values.T
col_idcs = [df.columns.get_loc(cn) for cn in col_names]
other_col_names = [name for idx, name in enumerate(df.columns) if idx not in col_idcs]
other_col_idcs = [df.columns.get_loc(cn) for cn in other_col_names]
# split df into indexing colums(=keys) and data colums(=vals)
keys = values[col_idcs,:]
vals = values[other_col_idcs,:]
# list of tuple of key pairs
multikeys = list(zip(*keys))
# remember unique key pairs and ther indices
ukeys, index = np.unique(multikeys, return_index=True, axis=0)
# split data columns according to those indices
arrays = np.split(vals, index[1:], axis=1)
# resulting list of subarrays has same number of subarrays as unique key pairs
# each subarray has the following shape:
# rows = number of non-grouped data columns
# cols = number of data points grouped into that unique key pair
# prepare multi index
idx = pd.MultiIndex.from_arrays(ukeys.T, names=col_names)
list_agg_vals = dict()
for tup in zip(*arrays, other_col_names):
col_vals = tup[:-1] # first entries are the subarrays from above
col_name = tup[-1] # last entry is data-column name
list_agg_vals[col_name] = col_vals
df2 = pd.DataFrame(data=list_agg_vals, index=idx)
return df2
In [227]: %timeit f_multi(df, ['a','d'])
2.54 ms ± 64.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [228]: %timeit df.groupby(['a','d']).agg(list)
4.56 ms ± 61.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
for the random seed 0 one would get:
Let us using df.groupby
with list and Series
constructor
pd.Series({x : y.b.tolist() for x , y in df.groupby('a')})
Out[664]:
A [1, 2]
B [5, 5, 4]
C [6]
dtype: object
Sorting consumes O(nlog(n))
time which is the most time consuming operation in the solutions suggested above
For a simple solution (containing single column) pd.Series.to_list
would work and can be considered more efficient unless considering other frameworks
e.g.
import pandas as pd
from string import ascii_lowercase
import random
def generate_string(case=4):
return ''.join([random.choice(ascii_lowercase) for _ in range(case)])
df = pd.DataFrame({'num_val':[random.randint(0,100) for _ in range(20000000)],'string_val':[generate_string() for _ in range(20000000)]})
%timeit df.groupby('string_val').agg({'num_val':pd.Series.to_list})
For 20 million records it takes about 17.2 seconds
. compared to apply(list)
which takes about 19.2
and lambda function which takes about 20.6s
Just to add up to previous answers, In my case, I want the list and other functions like min
and max
. The way to do that is:
df = pd.DataFrame({
'a':['A','A','B','B','B','C'],
'b':[1,2,5,5,4,6]
})
df=df.groupby('a').agg({
'b':['min', 'max',lambda x: list(x)]
})
#then flattening and renaming if necessary
df.columns = df.columns.to_flat_index()
df.rename(columns={('b', 'min'): 'b_min', ('b', 'max'): 'b_max', ('b', '<lambda_0>'): 'b_list'},inplace=True)
Here I have grouped elements with "|" as a separator
import pandas as pd
df = pd.read_csv('input.csv')
df
Out[1]:
Area Keywords
0 A 1
1 A 2
2 B 5
3 B 5
4 B 4
5 C 6
df.dropna(inplace = True)
df['Area']=df['Area'].apply(lambda x:x.lower().strip())
print df.columns
df_op = df.groupby('Area').agg({"Keywords":lambda x : "|".join(x)})
df_op.to_csv('output.csv')
Out[2]:
df_op
Area Keywords
A [1| 2]
B [5| 5| 4]
C [6]
Answer based on @EdChum's comment on his answer. Comment is this -
groupby is notoriously slow and memory hungry, what you could do is sort by column A, then find the idxmin and idxmax (probably store this in a dict) and use this to slice your dataframe would be faster I think
Let's first create a dataframe with 500k categories in first column and total df shape 20 million as mentioned in question.
df = pd.DataFrame(columns=['a', 'b'])
df['a'] = (np.random.randint(low=0, high=500000, size=(20000000,))).astype(str)
df['b'] = list(range(20000000))
print(df.shape)
df.head()
# Sort data by first column
df.sort_values(by=['a'], ascending=True, inplace=True)
df.reset_index(drop=True, inplace=True)
# Create a temp column
df['temp_idx'] = list(range(df.shape[0]))
# Take all values of b in a separate list
all_values_b = list(df.b.values)
print(len(all_values_b))
# For each category in column a, find min and max indexes
gp_df = df.groupby(['a']).agg({'temp_idx': [np.min, np.max]})
gp_df.reset_index(inplace=True)
gp_df.columns = ['a', 'temp_idx_min', 'temp_idx_max']
# Now create final list_b column, using min and max indexes for each category of a and filtering list of b.
gp_df['list_b'] = gp_df[['temp_idx_min', 'temp_idx_max']].apply(lambda x: all_values_b[x[0]:x[1]+1], axis=1)
print(gp_df.shape)
gp_df.head()
This above code takes 2 minutes for 20 million rows and 500k categories in first column.
© 2022 - 2024 — McMap. All rights reserved.