I have used several supercomputing facilities (I'm an astrophysicist) and have often faced the same problem: I know C/C++ very well but prefer to work with other languages.
In general, any approach other than MPI will do, but consider that often such supercomputers have heavily optimised MPI libraries, often tailored for the specific hardware integrated in the cluster. It is difficult to tell how much the performance of your Rust programs will be affected if you do not use MPI, but the safest bet is to stay with the MPI implementation provided on the cluster.
There is no performance penalty in using a Rust wrapper around a C library like a MPI library, as the bottleneck is the time needed to transfer data (e.g. via a MPI_Send) between nodes, not the negligible cost of an additional function call. (Moreover, this is not the case for Rust: there is no additional function call, as already stated above.)
However, despite the very good FFI provided by Rust, it is not going to be easy to create MPI bindings. The problem lies in the fact that MPI is not a library, but a specification. Popular MPI libraries are OpenMPI (http://www.open-mpi.org) and MPICH (http://www.mpich.org). Each of them differs slightly in the way they implement the standard, and they usually cover such differences using C preprocessor macros. Very few FFIs are able to deal with complex macros; I don't know how Rust scores here.
As an instance, I am implementing an MPI Program in Free Pascal but I am not able to use the existing MPICH bindings (http://wiki.lazarus.freepascal.org/MPICH), as the cluster I am using provides its own MPI library and I prefer to use this one for the reason stated above. I was unable to reuse MPICH bindings, as they assumed that constants like MPI_BYTE were hardcoded integer constants. But in my case they are pointers to opaque structures that seem to be created when MPI_Init is called.
Julia bindings to MPI (https://github.com/lcw/MPI.jl) solve this problem by running C and Fortran programs during the installation that generate Julia code with the correct values for such constants. See e.g. https://github.com/lcw/MPI.jl/blob/master/deps/make_f_const.f
In my case I preferred to implement a middleware, I.e., a small C library which wraps MPI calls with a more "predictable" interface. (This is more or less what the Python and Ocaml bindings do too, see https://forge.ocamlcore.org/projects/ocamlmpi/ and http://mpi4py.scipy.org.) Things are running smoothly, so far I haven't got any problem.
unsafe
. Also, if you want to answer the question rather than comment I will accept. – Beak