Here is something that I just made, I stumbled on this post because I was looking for a way to take every pair of variables, and get a tidy nX3 dataframe. Column 1 is a variable, Column 2 is a variable, and Column 3 and 4 are their absolute value and true correlation. Just pass the function a dataframe of numeric and integer values.
pairwiseCor <- function(dataframe){
pairs <- combn(names(dataframe), 2, simplify=FALSE)
df <- data.frame(Vairable1=rep(0,length(pairs)), Variable2=rep(0,length(pairs)),
AbsCor=rep(0,length(pairs)), Cor=rep(0,length(pairs)))
for(i in 1:length(pairs)){
df[i,1] <- pairs[[i]][1]
df[i,2] <- pairs[[i]][2]
df[i,3] <- round(abs(cor(dataframe[,pairs[[i]][1]], dataframe[,pairs[[i]][2]])),4)
df[i,4] <- round(cor(dataframe[,pairs[[i]][1]], dataframe[,pairs[[i]][2]]),4)
}
pairwiseCorDF <- df
pairwiseCorDF <- pairwiseCorDF[order(pairwiseCorDF$AbsCor, decreasing=TRUE),]
row.names(pairwiseCorDF) <- 1:length(pairs)
pairwiseCorDF <<- pairwiseCorDF
pairwiseCorDF
}
This is what the output is:
> head(pairwiseCorDF)
Vairable1 Variable2 AbsCor Cor
1 roll_belt accel_belt_z 0.9920 -0.9920
2 gyros_dumbbell_x gyros_dumbbell_z 0.9839 -0.9839
3 roll_belt total_accel_belt 0.9811 0.9811
4 total_accel_belt accel_belt_z 0.9752 -0.9752
5 pitch_belt accel_belt_x 0.9658 -0.9658
6 gyros_dumbbell_z gyros_forearm_z 0.9491 0.9491
?cor
does not give p-values though.rcorr
from theHmisc
library will however do so. – Hawsepipe?cor
will give a link tocor.test
which will (If the OP follows the suggestion, he should find that). – Rathenaucor.test
does not operate on a matrix/data.frame simply likecor
does. – Hawsepipe