I would split the problem into two parts.
First, I would ignore the fact that the number of used bits is not a multiple of 32. I would use one of the given methods to swap around the whole array like that.
pseudocode:
for half the longs in the array:
take the first longword;
take the last longword;
swap the bits in the first longword
swap the bits in the last longword;
store the swapped first longword into the last location;
store the swapped last longword into the first location;
and then fix up the fact that the first few bits (call than number n
) are actually garbage bits from the end of the longs:
for all of the longs in the array:
split the value in the leftmost n bits and the rest;
store the leftmost n bits into the righthand part of the previous word;
shift the rest bits to the left over n positions (making the rightmost n bits zero);
store them back;
You could try to fold that into one pass over the whole array of course. Something like this:
for half the longs in the array:
take the first longword;
take the last longword;
swap the bits in the first longword
swap the bits in the last longword;
split both value in the leftmost n bits and the rest;
for the new first longword:
store the leftmost n bits into the righthand side of the previous word;
store the remaining bits into the first longword, shifted left;
for the new last longword:
remember the leftmost n bits for the next iteration;
store the remembered leftmost n bits, combined with the remaining bits, into the last longword;
store the swapped first longword into the last location;
store the swapped last longword into the first location;
I'm abstracting from the edge cases here (first and last longword), and you may need to reverse the shifting direction depending on how the bits are ordered inside each longword.
unsigned long *
, not inuint8_t *
. That would factor out the platform-dependent issues. – Cornstalkarray
member could no longer be assumed. – Milkmanuint32_t *
for performance, but then you'll have to deal with little vs big endianness. Performance and portability don't really go together. – Cornstalk