Background
I am totally new to Python and to machine learning. I just tried to set up a UNet from code I found on the internet and wanted to adapt it to the case I'm working on bit for bit. When trying to .fit
the UNet to the training data, I received the following error:
InvalidArgumentError: required broadcastable shapes at loc(unknown)
[[node Equal (defined at <ipython-input-68-f1422c6f17bb>:1) ]] [Op:__inference_train_function_3847]
I get a lot of results when I search for it, but mostly they are different errors.
What does this mean? And, more importantly, how can I fix it?
The code that caused the error
The context of this error is as follows:
I want to segment images and label the different classes.
I set up directories "trn", "tst" and "val" for training, test, and validation data. The dir_dat()
function applies os.path.join()
to get the full path to the respective data set. Each of the 3 folders has sub directories for each class labeled with integers. In each folder, there are some .tif
images for the respective class.
I defined the following image data generators (training data is sparse, hence the augmentation):
classes = np.array([ 0, 2, 4, 6, 8, 11, 16, 21, 29, 30, 38, 39, 51])
bs = 15 # batch size
augGen = ks.preprocessing.image.ImageDataGenerator(rotation_range = 365,
width_shift_range = 0.05,
height_shift_range = 0.05,
horizontal_flip = True,
vertical_flip = True,
fill_mode = "nearest") \
.flow_from_directory(directory = dir_dat("trn"),
classes = [str(x) for x in classes.tolist()],
class_mode = "categorical",
batch_size = bs, seed = 42)
tst_batches = ks.preprocessing.image.ImageDataGenerator() \
.flow_from_directory(directory = dir_dat("tst"),
classes = [str(x) for x in classes.tolist()],
class_mode = "categorical",
batch_size = bs, shuffle = False)
val_batches = ks.preprocessing.image.ImageDataGenerator() \
.flow_from_directory(directory = dir_dat("val"),
classes = [str(x) for x in classes.tolist()],
class_mode = "categorical",
batch_size = bs)
Then I set up the UNet based on this example. Here, I altered a few parameters to adapt the UNet to the situation (multiple classes), namely activation in the last layer and the loss function:
layer_in = ks.layers.Input(shape = (imgr, imgc, imgdim))
# convert pixel integer values to float
inVals = ks.layers.Lambda(lambda x: x / 255)(layer_in)
# Contraction path
c1 = ks.layers.Conv2D(16, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(inVals)
c1 = ks.layers.Dropout(0.1)(c1)
c1 = ks.layers.Conv2D(16, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(c1)
p1 = ks.layers.MaxPooling2D((2, 2))(c1)
c2 = ks.layers.Conv2D(32, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(p1)
c2 = ks.layers.Dropout(0.1)(c2)
c2 = ks.layers.Conv2D(32, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(c2)
p2 = ks.layers.MaxPooling2D((2, 2))(c2)
c3 = ks.layers.Conv2D(64, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(p2)
c3 = ks.layers.Dropout(0.2)(c3)
c3 = ks.layers.Conv2D(64, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(c3)
p3 = ks.layers.MaxPooling2D((2, 2))(c3)
c4 = ks.layers.Conv2D(128, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(p3)
c4 = ks.layers.Dropout(0.2)(c4)
c4 = ks.layers.Conv2D(128, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(c4)
p4 = ks.layers.MaxPooling2D(pool_size = (2, 2))(c4)
c5 = ks.layers.Conv2D(256, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(p4)
c5 = ks.layers.Dropout(0.3)(c5)
c5 = ks.layers.Conv2D(256, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(c5)
# Expansive path
u6 = ks.layers.Conv2DTranspose(128, (2, 2), strides = (2, 2), padding = "same")(c5)
u6 = ks.layers.concatenate([u6, c4])
c6 = ks.layers.Conv2D(128, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(u6)
c6 = ks.layers.Dropout(0.2)(c6)
c6 = ks.layers.Conv2D(128, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(c6)
u7 = ks.layers.Conv2DTranspose(64, (2, 2), strides = (2, 2), padding = "same")(c6)
u7 = ks.layers.concatenate([u7, c3])
c7 = ks.layers.Conv2D(64, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(u7)
c7 = ks.layers.Dropout(0.2)(c7)
c7 = ks.layers.Conv2D(64, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(c7)
u8 = ks.layers.Conv2DTranspose(32, (2, 2), strides = (2, 2), padding = "same")(c7)
u8 = ks.layers.concatenate([u8, c2])
c8 = ks.layers.Conv2D(32, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(u8)
c8 = ks.layers.Dropout(0.1)(c8)
c8 = ks.layers.Conv2D(32, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(c8)
u9 = ks.layers.Conv2DTranspose(16, (2, 2), strides = (2, 2), padding = "same")(c8)
u9 = ks.layers.concatenate([u9, c1], axis = 3)
c9 = ks.layers.Conv2D(16, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(u9)
c9 = ks.layers.Dropout(0.1)(c9)
c9 = ks.layers.Conv2D(16, (3, 3), activation = "relu",
kernel_initializer = "he_normal", padding = "same")(c9)
out = ks.layers.Conv2D(1, (1, 1), activation = "softmax")(c9)
model = ks.Model(inputs = layer_in, outputs = out)
model.compile(optimizer = "adam", loss = "sparse_categorical_crossentropy", metrics = ["accuracy"])
model.summary()
Finally, I defined callbacks and ran the training, which produced the error:
cllbs = [
ks.callbacks.EarlyStopping(patience = 4),
ks.callbacks.ModelCheckpoint(dir_out("Checkpoint.h5"), save_best_only = True),
ks.callbacks.TensorBoard(log_dir = './logs'),# log events for TensorBoard
]
model.fit(augGen, epochs = 5, validation_data = val_batches, callbacks = cllbs)
Full console output
This is the full output when running the last line (in case it helps solving the issue):
trained = model.fit(augGen, epochs = 5, validation_data = val_batches, callbacks = cllbs)
Epoch 1/5
Traceback (most recent call last):
File "<ipython-input-68-f1422c6f17bb>", line 1, in <module>
trained = model.fit(augGen, epochs = 5, validation_data = val_batches, callbacks = cllbs)
File "c:\users\manuel\python\lib\site-packages\tensorflow\python\keras\engine\training.py", line 1183, in fit
tmp_logs = self.train_function(iterator)
File "c:\users\manuel\python\lib\site-packages\tensorflow\python\eager\def_function.py", line 889, in __call__
result = self._call(*args, **kwds)
File "c:\users\manuel\python\lib\site-packages\tensorflow\python\eager\def_function.py", line 950, in _call
return self._stateless_fn(*args, **kwds)
File "c:\users\manuel\python\lib\site-packages\tensorflow\python\eager\function.py", line 3023, in __call__
return graph_function._call_flat(
File "c:\users\manuel\python\lib\site-packages\tensorflow\python\eager\function.py", line 1960, in _call_flat
return self._build_call_outputs(self._inference_function.call(
File "c:\users\manuel\python\lib\site-packages\tensorflow\python\eager\function.py", line 591, in call
outputs = execute.execute(
File "c:\users\manuel\python\lib\site-packages\tensorflow\python\eager\execute.py", line 59, in quick_execute
tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
InvalidArgumentError: required broadcastable shapes at loc(unknown)
[[node Equal (defined at <ipython-input-68-f1422c6f17bb>:1) ]] [Op:__inference_train_function_3847]
Function call stack:
train_function