I recently created an FSM module in OCaml which you can find here
I have some special requirements for my FSM implementation which could make it not quite as nice to look at as some of the others pointed out here, however, I think the way you declare the FSM itself is kind of nice and declarative. The special requirement is that I need to be able to generate code in HDL (hardware description language) from a declarative description of the FSM in addition to being able to simulate the FSM's operation in the OCaml version. Because of this I needed to use predicate expressions instead of transition functions (otherwise, how would I translate a function to a string?) So mainly you want to focus on the FSM module there and the create and eval_fsm functions there.
Here is an example of usage:
(*********************************************************
* FSM testing *******************************************
*)
(* inputs to the FSM *)
let full = Var({name ="full"; value = F});;
let ten_minutes = Var({name = "ten_minutes"; value = F});;
let empty = Var({name = "empty"; value = F});;
let five_minutes = Var({name = "five_minutes"; value =F});;
(* T is true, F is false *)
let _ =
assign full F ;
assign ten_minutes F ;
assign empty F ;
assign five_minutes F ;;
(* outputs from the FSM *)
let water_on = Var({name = "water_on"; value = F});;
let agitate = Var({name = "agitate"; value = F});;
let drain = Var({name = "drain" ; value = F});;
let start_timer = Var({name = "start_timer"; value = F});;
let motor_on = Var({name = "motor_on"; value = F});;
let washed = Var({name = "washed"; value = F});;
let soap = Var({name = "soap"; value = F});;
let reset_actions =
assign water_on F;
assign agitate F;
assign drain F;
assign start_timer F;
assign motor_on F;;
module WashStates =
struct
type t = START | FILL | WASH | DRAIN | RINSE | SPIN | STOP
deriving(Show, Enum)
let start_state = START
end
module LogicExp =
struct
type t = boolean Logic.bexp
type var_t = boolean Logic.variable
let eval_exp exp = to_bool (Logic.eval exp)
let var_to_s = var_to_s
end
module WashFSM = FSM(WashStates)(LogicExp)
open WashStates
(* declare the state table *)
(* CS, PREDICATE, NS, ACTIONs *)
let my_fsm = [
(START, Const(T), FILL, [(water_on, T);
(soap, T)]);
(FILL, Bop(And,full,soap), WASH, [(water_on, F);
(agitate, T);
(washed, T);
(start_timer,T)]);
(WASH, ten_minutes, DRAIN,[(agitate, F);
(start_timer,F);
(empty, T)]);
(DRAIN, Bop(And,empty,soap), FILL, [(drain, F);
(soap, F);
(water_on, T)] );
(FILL, Bop(And,full,Not(soap)), RINSE,[(water_on, F);
(soap, F);
(empty, F);
(agitate, T)]);
(RINSE, ten_minutes, DRAIN, [(agitate, F);
(empty, T)] );
(DRAIN, Bop(And,empty,Not(soap)), SPIN, [(motor_on, T);
(start_timer,T)]);
(SPIN, five_minutes, STOP, [(water_on, F);
(drain, F);
(start_timer,F);
(motor_on, F)]);
(STOP, Const(T), STOP, [(motor_on, F)]);
];;
let st_table, current_state = WashFSM.create my_fsm in
let _ = assign full T in
let current_state = WashFSM.eval_fsm st_table current_state in
let _ = assign ten_minutes T in
let current_state = WashFSM.eval_fsm st_table current_state in
let current_state = WashFSM.eval_fsm st_table current_state in
let _ = (assign ten_minutes F);(assign empty T) in
let current_state = WashFSM.eval_fsm st_table current_state in
let _ = assign five_minutes T in
let current_state = WashFSM.eval_fsm st_table current_state in
let _ = assign five_minutes F in
let _ = assign ten_minutes T in
let current_state = WashFSM.eval_fsm st_table current_state in
let current_state = WashFSM.eval_fsm st_table current_state in
let _ = assign five_minutes T in
let _ = WashFSM.eval_fsm st_table current_state in
(*...and so on...*)
(Please excuse the ";;" endings - I wanted to be able to cut & paste this code into the REPL)
Some of the code used here is found in the Logic project on my github (fsm.ml is part of that project). The predicate expression evaluates to either T or F (true or false). If true, then the transition is made from current state to next state. Const T means always transition. An expression such as:
Bop(And, full, soap)
Means that if both full and soap are T (true) then the expression evaluates to true.