If this dictionary is rarely written and often read, then I often employ safe double locking by replacing the entire dictionary on write. This is particularly effective if you can batch writes together to make them less frequent.
For example, this is a cut down version of a method we use that tries to get a schema object associated with a type, and if it can't, then it goes ahead and creates schema objects for all the types it finds in the same assembly as the specified type to minimize the number of times the entire dictionary has to be copied:
public static Schema GetSchema(Type type)
{
if (_schemaLookup.TryGetValue(type, out Schema schema))
return schema;
lock (_syncRoot) {
if (_schemaLookup.TryGetValue(type, out schema))
return schema;
var newLookup = new Dictionary<Type, Schema>(_schemaLookup);
foreach (var t in type.Assembly.GetTypes()) {
var newSchema = new Schema(t);
newLookup.Add(t, newSchema);
}
_schemaLookup = newLookup;
return _schemaLookup[type];
}
}
So the dictionary in this case will be rebuilt, at most, as many times as there are assemblies with types that need schemas. For the rest of the application lifetime the dictionary accesses will be lock-free. The dictionary copy becomes a one-time initialization cost of the assembly. The dictionary swap is thread-safe because pointer writes are atomic so the whole reference gets switched at once.
You can apply similar principles in other situations as well.
!ContainsKey()
– Alderman