Recap the question: You have two functions which take a parameter of type T
. One takes its parameter as a template parameter, and the other as a 'normal' parameter.
I'm going to call the two functions funcT
and funcN
instead of tfunc
and func
.
You wish to be able to call funcT
from funcN
. Marking the latter as a constexpr
doesn't help.
Any function marked as constexpr
must be compilable as if the constexpr
wasn't there. constexpr
functions are a little schizophrenic. They only graduate to full constant-expressions in certain circumstances.
It would not be possible to implement funcN to run at runtime in a simple way, as it would need to be able to work for all possible values of t. This would require the compiler to instantiate many instances of tfunc
, one for each value of t. But you can work around this if you're willing to live with a small subset of T. There is a template-recursion limit of 1024 in g++, so you can easily handle 1024 values of T with this code:
#include<iostream>
#include<functional>
#include<array>
using namespace std;
template <typename T, T t>
constexpr T funcT() {
return t + 10;
}
template<typename T, T u>
constexpr T worker (T t) {
return t==0 ? funcT<T,u>() : worker<T, u+1>(t-1);
}
template<>
constexpr int worker<int,1000> (int ) {
return -1;
}
template <typename T>
constexpr T funcN(T t)
{
return t<1000 ? worker<T,0>(t) : -1;
}
int main()
{
std::cout << funcN(10) << std::endl;
array<int, funcN(10)> a; // to verify that funcN(10) returns a constant-expression
return 0;
}
It uses a function worker
which will recursively convert the 'normal' parameter t
into a template parameter u
, which it then uses to instantiate and execute tfunc<T,u>
.
The crucial line is return funcT<T,u>() : worker<T, u+1>(t-1);
This has limitations. If you want to use long
, or other integral types, you'll have to add another specialization. Obviously, this code only works for t between 0 and 1000 - the exact upper limit is probably compiler-dependent. Another option might be to use a binary search of sorts, with a different worker function for each power of 2:
template<typename T, T u>
constexpr T worker4096 (T t) {
return t>=4096 ? worker2048<T, u+4096>(t-4096) : worker2048<T, u>(t);
}
I think this will work around the template-recursion-limit, but it will still require a very large number of instantiations and would make compilation very slow, if it works at all.