Since you have a discrete scale, you should be able to manually create the set of colors and use scale_color_manual without too much trouble.
library(ggplot2)
theme_set(theme_bw())
fake_data = data.frame(
x = rnorm(42),
y = rnorm(42),
Label = rep(LETTERS[1:7], each = 6))
p_too_light <- ggplot()+ geom_line(data=fake_data, aes(x, y, color=Label))+
scale_colour_brewer(palette="Oranges")
p_too_light
Now use brewer.pal and http://www.datavis.ca/sasmac/brewerpal.html.
library(RColorBrewer)
my_orange = brewer.pal(n = 9, "Oranges")[3:9] #there are 9, I exluded the two lighter hues
p_better <- ggplot()+ geom_line(data=fake_data, aes(x, y, color=Label))+ scale_colour_manual(values=my_orange)
p_better
If you have more than 6 categories, you could use colorRampPalette with the boundary colors from the brewer.pal call earlier. However, now choosing the palette scheme requires more thought (maybe why ggplot2 doesn't do this automatically for discrete scales).
fake_data2 = data.frame(
x = rnorm(140),
y = rnorm(140),
Label = rep(LETTERS[1:20], each = 7))
orange_palette = colorRampPalette(c(my_orange[1], my_orange[4], my_orange[6]), space = "Lab")
my_orange2 = orange_palette(20)
p_20cat <- ggplot()+ geom_line(data=fake_data2, aes(x, y, color=Label))+
scale_colour_manual(values=my_orange2)
p_20cat