This is the idiom I now use, as, in addition, it handles keeping columns that are not part of the update table. I use some different names than from the OP, but the flavor is similar.
The one thing I do is create a variable for the keys used in the join, as I use that in a few spots. But otherwise, it does what is desired.
In itself it doesn't handle the action of, for example, "update this row if a value is NA", but you should exercise that condition when creating the join table.
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
.keys <- c("key1", "key2")
.base_table <- tribble(
~key1, ~key2, ~val1, ~val2,
"A", "a", 0, 0,
"A", "b", 0, 1,
"B", "a", 1, 0,
"B", "b", 1, 1)
.join_table <- tribble(
~key1, ~key2, ~val2,
"A", "b", 100,
"B", "a", 111)
# This works
df_result <- .base_table %>%
# Pull off rows from base table that match the join table
semi_join(.join_table, .keys) %>%
# Drop cols from base table that are in join table, except for the key columns
select(-matches(setdiff(names(.join_table), .keys))) %>%
# Left join on the join table columns
left_join(.join_table, .keys) %>%
# Remove the matching rows from the base table, and bind on the newly joined result from above.
bind_rows(.base_table %>% anti_join(.join_table, .keys))
df_result %>%
print()
#> # A tibble: 4 x 4
#> key1 key2 val1 val2
#> <chr> <chr> <dbl> <dbl>
#> 1 A b 0 100
#> 2 B a 1 111
#> 3 A a 0 0
#> 4 B b 1 1
Created on 2019-12-12 by the reprex package (v0.3.0)
left_join(df1, df2, by="y") %>% transmute(y, x1 = ifelse(is.na(x1.y), x1.x, x1.y))
? Perhaps this could be added to the other answer and this one closed as dupe? (The other is not a data.table specific question) – Xylene