Concerning "So results are always 18 digits or 20 digits."
See @Thomas comment. If you generate random numbers long enough, code will create ones like 5, 11 and 33387. If code generates 1,000,000,000 numbers/second, it may take a year as very small numbers < 100,000 are so rare amongst all 64-bit numbers.
rand()
simple returns random bits. A simplistic method pulls 1 bit at a time
uint64_t rand_uint64_slow(void) {
uint64_t r = 0;
for (int i=0; i<64; i++) {
r = r*2 + rand()%2;
}
return r;
}
Assuming RAND_MAX
is some power of 2 - 1 as in OP's case 1073741823 == 0x3FFFFFFF
, take advantage that 30 at least 15 bits are generated each time. The following code will call rand()
5 3 times - a tad wasteful. Instead bits shifted out could be saved for the next random number, but that brings in other issues. Leave that for another day.
uint64_t rand_uint64(void) {
uint64_t r = 0;
for (int i=0; i<64; i += 15 /*30*/) {
r = r*((uint64_t)RAND_MAX + 1) + rand();
}
return r;
}
A portable loop count method avoids the 15 /*30*/
- But see 2020 edit below.
#if RAND_MAX/256 >= 0xFFFFFFFFFFFFFF
#define LOOP_COUNT 1
#elif RAND_MAX/256 >= 0xFFFFFF
#define LOOP_COUNT 2
#elif RAND_MAX/256 >= 0x3FFFF
#define LOOP_COUNT 3
#elif RAND_MAX/256 >= 0x1FF
#define LOOP_COUNT 4
#else
#define LOOP_COUNT 5
#endif
uint64_t rand_uint64(void) {
uint64_t r = 0;
for (int i=LOOP_COUNT; i > 0; i--) {
r = r*(RAND_MAX + (uint64_t)1) + rand();
}
return r;
}
The autocorrelation effects commented here are caused by a weak rand()
. C does not specify a particular method of random number generation. The above relies on rand()
- or whatever base random function employed - being good.
If rand()
is sub-par, then code should use other generators. Yet one can still use this approach to build up larger random numbers.
[Edit 2020]
Hallvard B. Furuseth provides as nice way to determine the number of bits in RAND_MAX
when it is a Mersenne Number - a power of 2 minus 1.
#define IMAX_BITS(m) ((m)/((m)%255+1) / 255%255*8 + 7-86/((m)%255+12))
#define RAND_MAX_WIDTH IMAX_BITS(RAND_MAX)
_Static_assert((RAND_MAX & (RAND_MAX + 1u)) == 0, "RAND_MAX not a Mersenne number");
uint64_t rand64(void) {
uint64_t r = 0;
for (int i = 0; i < 64; i += RAND_MAX_WIDTH) {
r <<= RAND_MAX_WIDTH;
r ^= (unsigned) rand();
}
return r;
}
rand()
as you'll have all sorts of autocorrelation effects, and the distribution will not be uniform. Take a look at these: math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/C-LANG/… – BiforkedI also want outcomes like 5, 11, 33387
=> there is 10 times more number between 1000000000000000000 and 9999999999999999999 than between 0 and 1000000000000000000... so don't expect to see numbers like 5 soon – Biak