coord_cartesian
doesn't allow one to set per-facet coordinates, and using other range-limiting tends to produce a straight-line on the specific extreme. Since we have widelay-varying y-ranges, we can't set the limits on all facets identically; limiting the data before plot is not as friendly with geom_line
/geom_path
(https://mcmap.net/q/745583/-change-y-axis-limits-for-each-row-of-a-facet-plot-in-ggplot2), as it takes a lot more effort to interpolate data to get to the edge and then insert NA
s in order to break up the line. (Ultimately, the only way to get the desired result is to do exactly this, which can be a bit onerous with other data.)
One workaround is suggested in https://gist.github.com/burchill/d780d3e8663ad15bcbda7869394a348a, where it starts with
test_data %>%
ggplot(aes(x=Nsubjects, y = Odds, color=EffectSize)) +
facet_wrap(DataType ~ ExpType, labeller = label_both, scales="free") +
geom_line(size=2) +
geom_ribbon(aes(ymax=Upper, ymin=Lower, fill=EffectSize, color=NULL), alpha=0.2)
and in previous versions of ggplot2
, that gist defined coord_panel_ranges
and was able to control coordinates per-facet. The two right facets should narrow down to a 1-6(ish) y-axis so that the exploding confidence interval goes off-screen and allows the facet to focus primarily on the "normal range" of data. (Note: the test_data
and this vis is not mine, it's taken from the gist. While my needs are somewhat similar, I thought it better to stay within the confines of the gist's data and code.)
Unfortunately, this now fails for me with ggplot2-3.3.0
. Initial errors related to the recent loss of ggplot2::scale_range
, which I tried to mitigate with this adaptation of burchill's code (that uses other ggplot2:::
internal functions):
UniquePanelCoords <- ggplot2::ggproto(
"UniquePanelCoords", ggplot2::CoordCartesian,
num_of_panels = 1,
panel_counter = 1,
panel_ranges = NULL,
setup_layout = function(self, layout, params) {
self$num_of_panels <- length(unique(layout$PANEL))
self$panel_counter <- 1
layout
},
setup_panel_params = function(self, scale_x, scale_y, params = list()) {
if (!is.null(self$panel_ranges) & length(self$panel_ranges) != self$num_of_panels)
stop("Number of panel ranges does not equal the number supplied")
train_cartesian <- function(scale, limits, name, given_range = NULL) {
if (is.null(given_range)) {
expansion <- ggplot2:::default_expansion(scale, expand = self$expand)
range <- ggplot2:::expand_limits_scale(scale, expansion,
coord_limits = self$limits[[name]])
} else {
range <- given_range
}
out <- scale$break_info(range)
out$arrange <- scale$axis_order()
names(out) <- paste(name, names(out), sep = ".")
out
}
cur_panel_ranges <- self$panel_ranges[[self$panel_counter]]
if (self$panel_counter < self$num_of_panels)
self$panel_counter <- self$panel_counter + 1
else
self$panel_counter <- 1
c(train_cartesian(scale_x, self$limits$x, "x", cur_panel_ranges$x),
train_cartesian(scale_y, self$limits$y, "y", cur_panel_ranges$y))
}
)
coord_panel_ranges <- function(panel_ranges, expand = TRUE, default = FALSE, clip = "on") {
ggplot2::ggproto(NULL, UniquePanelCoords, panel_ranges = panel_ranges,
expand = expand, default = default, clip = clip)
}
but this is still failing with
test_data %>%
ggplot(aes(x=Nsubjects, y = Odds, color=EffectSize)) +
facet_wrap(DataType ~ ExpType, labeller = label_both, scales="free") +
geom_line(size=2) +
geom_ribbon(aes(ymax=Upper, ymin=Lower, fill=EffectSize, color=NULL), alpha=0.2) +
coord_panel_ranges(panel_ranges = list(
list(x=c(8,64), y=c(1,4)), # Panel 1
list(x=c(8,64), y=c(1,6)), # Panel 2
list(NULL), # Panel 3, an empty list falls back on the default values
list(x=c(8,64), y=c(1,7)) # Panel 4
))
# Error in panel_params$x$break_positions_minor() :
# attempt to apply non-function
I'm not very familiar with extending ggplot2
, and I suspect there is something I'm missing from the ggproto. Here's what the return value from the proto looks like:
str(c(train_cartesian(scale_x, self$limits$x, "x", cur_panel_ranges$x),
train_cartesian(scale_y, self$limits$y, "y", cur_panel_ranges$y)))
# List of 14
# $ x.range : num [1:2] 8 64
# $ x.labels : chr [1:3] "20" "40" "60"
# $ x.major : num [1:3] 0.214 0.571 0.929
# $ x.minor : num [1:6] 0.0357 0.2143 0.3929 0.5714 0.75 ...
# $ x.major_source: num [1:3] 20 40 60
# $ x.minor_source: num [1:6] 10 20 30 40 50 60
# $ x.arrange : chr [1:2] "secondary" "primary"
# $ y.range : num [1:2] 1 4
# $ y.labels : chr [1:4] "1" "2" "3" "4"
# $ y.major : num [1:4] 0 0.333 0.667 1
# $ y.minor : num [1:7] 0 0.167 0.333 0.5 0.667 ...
# $ y.major_source: num [1:4] 1 2 3 4
# $ y.minor_source: num [1:7] 1 1.5 2 2.5 3 3.5 4
# $ y.arrange : chr [1:2] "primary" "secondary"
Do I need to have an x
element that's a list with at least a break_positions_minor
function, or is there something else that needs to be inherited in order to ensure panel_params$x$break_positions_minor
exists or a reasonable default is used?
Data:
test_data <- structure(list(DataType = structure(c(1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A", "B"), class = "factor"),
ExpType = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("X", "Y"), class = "factor"),
EffectSize = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L), .Label = c("15", "35"
), class = "factor"), Nsubjects = c(8, 16, 32, 64, 8, 16,
32, 64, 8, 16, 32, 64, 8, 16, 32, 64, 8, 16, 32, 64, 8, 16,
32, 64, 8, 16, 32, 64, 8, 16, 32, 64), Odds = c(1.06248116259846,
1.09482076720863, 1.23086993413208, 1.76749340505612, 1.06641831731573,
1.12616954196688, 1.48351814320987, 3.50755080416964, 1.11601399761081,
1.18352602009495, 1.45705466646283, 2.53384744810515, 1.13847061762186,
1.24983742407086, 1.97075900741022, 6.01497152563726, 1.02798821372378,
1.06297006279249, 1.19432835697453, 1.7320754674107, 1.02813271730924,
1.09355953747203, 1.44830680332583, 3.4732692664923, 1.06295915758305,
1.12008443626365, 1.3887632112682, 2.46321037334, 1.06722652223114,
1.1874936754725, 1.89870184372054, 5.943747409114), Upper = c(1.72895843644471,
2.09878774769559, 2.59771794965346, 5.08513435549015, 1.72999898901071,
1.8702196882561, 3.85385388850167, 5.92564404180303, 1.99113042576373,
2.61074135841984, 3.45852331828636, 4.83900142207583, 1.57897154221764,
1.8957409107653, 10, 75, 2.3763918424135, 2.50181951057562,
3.45037180395673, 3.99515276392065, 2.04584535265976, 2.39317394040066,
2.832526733659, 5.38414183471915, 1.40569501856836, 2.6778044191832,
2.98023068052396, 4.75934650422069, 1.54116883311054, 2.50647989271592,
3.48517589981551, 100), Lower = c(0.396003888752214, 0.0908537867216577,
-0.135978081389309, -1.55014754537791, 0.40283764562075,
0.382119395677663, -0.88681760208193, 1.08945756653624, 0.240897569457892,
-0.243689318229938, -0.544413985360706, 0.228693474134466,
0.69796969302609, 0.603933937376415, 0.183548809738402, 3.57236968943798,
-0.320415414965949, -0.375879384990643, -1.06171509000767,
-0.531001829099242, 0.010420081958713, -0.206054865456611,
0.0640868729926525, 1.56239669826544, 0.720223296597732,
-0.437635546655903, -0.202704257987574, 0.167074242459314,
0.593284211351745, -0.131492541770921, 0.312227787625573,
3.76692741957876)), .Names = c("DataType", "ExpType", "EffectSize",
"Nsubjects", "Odds", "Upper", "Lower"), class = c("tbl_df", "tbl",
"data.frame"), row.names = c(NA, -32L))
coord_cartesian(ylim = c(0, 6))
. Presumably the end result is being able to adjust this on a per-panel basis? – Deferralcowplot
/patchwork
proficiency, partly because there are several other plot aesthetics where merging legends just seems to over-complicate what I thought would be innate to the otherwise easy-to-use faceting. – Lingulate