There is a variation on what you are asking for which is more general:
(/\)
:: (Functor f)
=> ((a -> (a, a)) -> (c -> (a, c)))
-- ^ Lens' c a
-> ((b -> (b, b)) -> (c -> (b, c)))
-- ^ Lens' c b
-> (((a, b) -> f (a, b)) -> (c -> f c))
-- ^ Lens' c (a, b)
(lens1 /\ lens2) f c0 =
let (a, _) = lens1 (\a_ -> (a_, a_)) c0
(b, _) = lens2 (\b_ -> (b_, b_)) c0
fab = f (a, b)
in fmap (\(a, b) ->
let (_, c1) = lens1 (\a_ -> (a_, a)) c0
(_, c2) = lens2 (\b_ -> (b_, b)) c1
in c2
) fab
infixl 7 /\
Just focus on the type signature with lens type synonyms:
Lens' c a -> Lens' c b -> Lens' c (a, b)
It takes two lenses and combines them into a lens to a pair of fields. This is slightly more general and works for combining lenses that point to fields of different types. However, then you'd have to mutate the two fields separately.
I just wanted to throw this solution out there in case people were looking for something like this.
(&&&)
. It must have a type something like(&&&) :: Lens a b -> Lens a b -> Lens a b
so that you can use it in the same way as the two lenses that you combine to make it. Given thatview _1 (1,2) = 1
andview _2 (1,2) = 2
, what do you expect the result ofview (_1 &&& _2) (1,2)
to be? – Shanitashank