Step 1, arbitrarily assign one point P1 as (0,0).
Step 2, arbitrarily assign one point P2 along the positive x axis. (0, Dp1p2)
Step 3, find a point P3 such that
Dp1p2 ~= Dp1p3+Dp2p3
Dp1p3 ~= Dp1p2+Dp2p3
Dp2p3 ~= Dp1p3+Dp1p2
and set that point in the "positive" y domain (if it meets any of these criteria, the point should be placed on the P1P2 axis).
Use the cosine law to determine the distance:
cos (A) = (Dp1p2^2 + Dp1p3^2 - Dp2p3^2)/(2*Dp1p2* Dp1p3)
P3 = (Dp1p3 * cos (A), Dp1p3 * sin(A))
You have now successfully built an orthonormal space and placed three points in that space.
Step 4: To determine all the other points, repeat step 3, to give you a tentative y coordinate.
(Xn, Yn).
Compare the distance {(Xn, Yn), (X3, Y3)} to Dp3pn in your matrix. If it is identical, you have successfully identified the coordinate for point n. Otherwise, the point n is at (Xn, -Yn).
Note there is an alternative to step 4, but it is too much math for a Saturday afternoon