Here Matrix multiplication using hdf5 I use hdf5 (pytables) for big matrix multiplication, but I was suprised because using hdf5 it works even faster then using plain numpy.dot and store matrices in RAM, what is the reason of this behavior?
And maybe there is some faster function for matrix multiplication in python, because I still use numpy.dot for small block matrix multiplication.
here is some code:
Assume matrices can fit in RAM: test on matrix 10*1000 x 1000.
Using default numpy(I think no BLAS lib). Plain numpy arrays are in RAM: time 9.48
If A,B in RAM, C on disk: time 1.48
If A,B,C on disk: time 372.25
If I use numpy with MKL results are: 0.15,0.45,43.5.
Results looks reasonable, but I still don't understand why in 1st case block multiplication is faster(when we store A,B in RAM).
n_row=1000
n_col=1000
n_batch=10
def test_plain_numpy():
A=np.random.rand(n_row,n_col)# float by default?
B=np.random.rand(n_col,n_row)
t0= time.time()
res= np.dot(A,B)
print (time.time()-t0)
#A,B in RAM, C on disk
def test_hdf5_ram():
rows = n_row
cols = n_col
batches = n_batch
#using numpy array
A=np.random.rand(n_row,n_col)
B=np.random.rand(n_col,n_row)
#settings for all hdf5 files
atom = tables.Float32Atom() #if store uint8 less memory?
filters = tables.Filters(complevel=9, complib='blosc') # tune parameters
Nchunk = 128 # ?
chunkshape = (Nchunk, Nchunk)
chunk_multiple = 1
block_size = chunk_multiple * Nchunk
#using hdf5
fileName_C = 'CArray_C.h5'
shape = (A.shape[0], B.shape[1])
h5f_C = tables.open_file(fileName_C, 'w')
C = h5f_C.create_carray(h5f_C.root, 'CArray', atom, shape, chunkshape=chunkshape, filters=filters)
sz= block_size
t0= time.time()
for i in range(0, A.shape[0], sz):
for j in range(0, B.shape[1], sz):
for k in range(0, A.shape[1], sz):
C[i:i+sz,j:j+sz] += np.dot(A[i:i+sz,k:k+sz],B[k:k+sz,j:j+sz])
print (time.time()-t0)
h5f_C.close()
def test_hdf5_disk():
rows = n_row
cols = n_col
batches = n_batch
#settings for all hdf5 files
atom = tables.Float32Atom() #if store uint8 less memory?
filters = tables.Filters(complevel=9, complib='blosc') # tune parameters
Nchunk = 128 # ?
chunkshape = (Nchunk, Nchunk)
chunk_multiple = 1
block_size = chunk_multiple * Nchunk
fileName_A = 'carray_A.h5'
shape_A = (n_row*n_batch, n_col) # predefined size
h5f_A = tables.open_file(fileName_A, 'w')
A = h5f_A.create_carray(h5f_A.root, 'CArray', atom, shape_A, chunkshape=chunkshape, filters=filters)
for i in range(batches):
data = np.random.rand(n_row, n_col)
A[i*n_row:(i+1)*n_row]= data[:]
rows = n_col
cols = n_row
batches = n_batch
fileName_B = 'carray_B.h5'
shape_B = (rows, cols*batches) # predefined size
h5f_B = tables.open_file(fileName_B, 'w')
B = h5f_B.create_carray(h5f_B.root, 'CArray', atom, shape_B, chunkshape=chunkshape, filters=filters)
sz= rows/batches
for i in range(batches):
data = np.random.rand(sz, cols*batches)
B[i*sz:(i+1)*sz]= data[:]
fileName_C = 'CArray_C.h5'
shape = (A.shape[0], B.shape[1])
h5f_C = tables.open_file(fileName_C, 'w')
C = h5f_C.create_carray(h5f_C.root, 'CArray', atom, shape, chunkshape=chunkshape, filters=filters)
sz= block_size
t0= time.time()
for i in range(0, A.shape[0], sz):
for j in range(0, B.shape[1], sz):
for k in range(0, A.shape[1], sz):
C[i:i+sz,j:j+sz] += np.dot(A[i:i+sz,k:k+sz],B[k:k+sz,j:j+sz])
print (time.time()-t0)
h5f_A.close()
h5f_B.close()
h5f_C.close()
np.dot
scenario are you running out of memory and using virtual memory? If you could post a small discrete example so that we can reproduce the difference it will be very beneficial. – Memorizenp.dot
working on chunks (viahdf5
) with a single call tonp.dot
. So isn't a test ofnp.dot
versus something else, but a test of memory handling for large arrays. – But