I am running a Spark job using Scala, but it gets stuck not executing and tasks by my worker nodes.
Currently I am submitting this to Livy, which submits to our Spark Cluster with 8 cores and 12GB of RAM with the following configuration:
data={
'file': bar_jar.format(bucket_name),
'className': 'com.bar.me',
'jars': [
common_jar.format(bucket_name),
],
'args': [
bucket_name,
spark_master,
data_folder
],
'name': 'Foo',
'driverMemory': '2g',
'executorMemory': '9g',
'driverCores': 1,
'executorCores': 1,
'conf': {
'spark.driver.memoryOverhead': '200',
'spark.executor.memoryOverhead': '200',
'spark.submit.deployMode': 'cluster'
}
}
The node logs then are endlessly filled with:
2019-03-29T22:24:32.119+0000: [GC (Allocation Failure) 2019-03-29T22:24:32.119+0000:
[ParNew: 68873K->20K(77440K), 0.0012329 secs] 257311K->188458K(349944K),
0.0012892 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
The issue is that the next stages & tasks are not executing, so the behavior is quite unexpected.