There is a race condition between the time Runtime.exec kicks off a new thread to start a Process and when you tell that process to destroy itself.
I'm on a Linux machine, so I will use the UNIXProcess.class file to illustrate.
Runtime.exec(...)
will create a new ProcessBuilder
and start it which on a Unix machine creates a new UNIXProcess
instance. In the constructor of UNIXProcess
there is this block of code which actually executes the process in a background (forked) thread:
java.security.AccessController.doPrivileged(
new java.security.PrivilegedAction() {
public Object run() {
Thread t = new Thread("process reaper") {
public void run() {
try {
pid = forkAndExec(prog,
argBlock, argc,
envBlock, envc,
dir,
redirectErrorStream,
stdin_fd, stdout_fd, stderr_fd);
} catch (IOException e) {
gate.setException(e); /*remember to rethrow later*/
gate.exit();
return;
}
java.security.AccessController.doPrivileged(
new java.security.PrivilegedAction() {
public Object run() {
stdin_stream = new BufferedOutputStream(new
FileOutputStream(stdin_fd));
stdout_stream = new BufferedInputStream(new
FileInputStream(stdout_fd));
stderr_stream = new FileInputStream(stderr_fd);
return null;
}
});
gate.exit(); /* exit from constructor */
int res = waitForProcessExit(pid);
synchronized (UNIXProcess.this) {
hasExited = true;
exitcode = res;
UNIXProcess.this.notifyAll();
}
}
};
t.setDaemon(true);
t.start();
return null;
}
});
Notice that the background thread sets the field pid
which is the Unix process id. This will be used by destroy()
to tell the OS which process to kill.
Because there isn't any way to make sure that this background thread has run when destroy()
is called, we may try to kill the process before it has run OR we may try to kill the process before pid field has been set; pid is uninitialized and therefore is 0. So I think calling destroy too early will do the equivalent of a kill -9 0
There is even a comment in the UNIXProcess destroy()
that alludes to this but only considers calling destroy after the process has already finished, not before it has started:
// There is a risk that pid will be recycled, causing us to
// kill the wrong process! So we only terminate processes
// that appear to still be running. Even with this check,
// there is an unavoidable race condition here, but the window
// is very small, and OSes try hard to not recycle pids too
// soon, so this is quite safe.
The pid field is not even marked as volatile so we may not even see the most recent value all the time.
java
forks something off or does something to create a new process that destroy() doesn't take care of if called too quickly / at the wrong time. – Lavonajava
forks something off. That's all I got. – Lavona